DSP技術(shù)在通信中有哪些應(yīng)用方法?
在這篇文章中,小編將為大家?guī)?a href="/tags/DSP技術(shù)" target="_blank">DSP技術(shù)的相關(guān)報道。如果你對本文即將要講解的內(nèi)容存在一定興趣,不妨繼續(xù)往下閱讀哦。
一、DSP技術(shù)及其實現(xiàn)方法
數(shù)字信號處理是將信號以數(shù)字方式表示并處理的理論和技術(shù)。數(shù)字信號處理與模擬信號處理是信號處理的子集。
數(shù)字信號處理的目的是對真實世界的連續(xù)模擬信號進(jìn)行測量或濾波。因此在進(jìn)行數(shù)字信號處理之前需要將信號從模擬域轉(zhuǎn)換到數(shù)字域,這通常通過模數(shù)轉(zhuǎn)換器實現(xiàn)。而數(shù)字信號處理的輸出經(jīng)常也要變換到模擬域,這是通過數(shù)模轉(zhuǎn)換器實現(xiàn)的。
數(shù)字信號處理的算法需要利用計算機(jī)或?qū)S锰幚碓O(shè)備如數(shù)字信號處理器(DSP)和專用集成電路(ASIC)等。數(shù)字信號處理技術(shù)及設(shè)備具有靈活、精確、抗干擾強(qiáng)、設(shè)備尺寸小、造價低、速度快等突出優(yōu)點,這些都是模擬信號處理技術(shù)與設(shè)備所無法比擬的。
DSP的實現(xiàn)方法一般有以下幾種:
(1) 在通用的計算機(jī)(如PC機(jī))上用軟件(如Fortran、C語言)實現(xiàn);
(2) 在通用計算機(jī)系統(tǒng)中加上專用的加速處理機(jī)實現(xiàn);
(3) 用通用的單片機(jī)(如MCS-51、96系列等)實現(xiàn),這種方法可用于一些不太復(fù)雜的數(shù)字信號處理,如數(shù)字控制等;
(4) 用通用的可編程DSP實現(xiàn)。與單片機(jī)相比,DSP芯片具有更加適合于數(shù)字信號處理的軟件和硬件資源,可用于 復(fù)雜的數(shù)字信號處理算法;
(5) 用專用的DSP芯片實現(xiàn)。在一些特殊的場合,要求的信號處理速度極高,用通用DSP芯片很難實現(xiàn),例如專用于FFT、數(shù)字濾波、卷積、相關(guān)等算法的DSP芯片,這種芯片將相應(yīng)的信號處理算法在芯片內(nèi)部用硬件實現(xiàn),無需進(jìn)行編程。
在上述幾種方法中,第1種方法的缺點是速度較慢,一般可用于DSP算法的模擬;第2種和第5種方法專用性強(qiáng),應(yīng)用受到很大的限制,第2種方法也不便于系統(tǒng)的獨立運行;第3種方法只適用于實現(xiàn)簡單的DSP算法;只有第4種方法才使數(shù)字信號處理的應(yīng)用打開了新的局面。
二、DSP技術(shù)應(yīng)用
目前DSP應(yīng)用主要包括如下方面:
軍事。如保密通信、雷達(dá)處理、聲納處理、圖像處理、射頻調(diào)制解調(diào)、導(dǎo)航、導(dǎo)彈制導(dǎo)等。
圖形與圖像。如二維和三維圖形處理、圖像壓縮與傳輸、圖像增強(qiáng)、動畫與數(shù)字地圖、機(jī)器人視覺、模式識別、工作站等。
儀器儀表。如頻譜分析、函數(shù)發(fā)生、鎖相環(huán)、地震處理、數(shù)字濾波、模式匹配、暫態(tài)分析等。
自動控制。如引擎控制、聲控、機(jī)器人控制、磁盤控制器、激光打印機(jī)控制、電動機(jī)控制等。
醫(yī)療。如助聽器、超聲設(shè)備、診斷工具、病人監(jiān)護(hù)、胎兒監(jiān)控、修復(fù)手術(shù)等。
家用電器。如高保真音響、音樂合成、音調(diào)控制、玩具與游戲、數(shù)字電話與電視、電動工具、固態(tài)應(yīng)答機(jī)等。
汽車。如自適應(yīng)駕駛控制、防滑制動器、發(fā)動機(jī)控制、導(dǎo)航及全球定位、振動分析、防撞雷達(dá)等。
信號處理。如數(shù)字濾波、自適應(yīng)濾波、快速傅里葉變換、希爾伯特變換、小波變換、相關(guān)運算、譜分析、卷積、模式匹配、加窗、波形產(chǎn)生等。
通信。如調(diào)制解調(diào)器、自適應(yīng)均衡、數(shù)據(jù)加密、數(shù)據(jù)壓縮、回波抵消、多路復(fù)用、傳真、擴(kuò)頻通信、糾錯編碼、可視電話、個人通信系統(tǒng)、移動通信、個人數(shù)字助手(PDA)、X.25分組交換開關(guān)等。
語音。如語音編碼、語音合成、語音識別、語音增強(qiáng)、說話人辨認(rèn)、說話人確認(rèn)、語音郵件、語音存儲、揚聲器檢驗、文本轉(zhuǎn)語音等。
相干傳輸?shù)恼Q生改變了光傳輸網(wǎng)絡(luò)的發(fā)展,其引入的電子數(shù)字信號處理器(DSP)成為增加城域和長途W(wǎng)DM網(wǎng)絡(luò)容量的關(guān)鍵推動因素。在過去,盡管波長容量的提升依賴于光源、調(diào)制器和探測器的速度演進(jìn),但DSP和它們實現(xiàn)的相關(guān)復(fù)雜調(diào)制編碼,已經(jīng)成為增加網(wǎng)絡(luò)容量的主要驅(qū)動因素。隨著光傳輸速度達(dá)到每波400Gbit/s以上,日益重要的相干DSP為光學(xué)供應(yīng)商和行業(yè)格局開辟了重大變革的可能性。
什么是DSP?DSP原理與組成DSP即數(shù)字信號處理技術(shù),DSP芯片即指能夠?qū)崿F(xiàn)數(shù)字信號處理技術(shù)的芯片,是一種快速強(qiáng)大的微處理器,獨特之處在于它能即時處理資料。DSP芯片的內(nèi)部采用程序和數(shù)據(jù)分開的哈佛結(jié)構(gòu),具有專門的硬件乘法器,可以用來快速地實現(xiàn)各種數(shù)字信號處理算法。在當(dāng)今的數(shù)字化時代背景下,DSP已成為通信、計算機(jī)、消費類電子產(chǎn)品等領(lǐng)域的基礎(chǔ)器件。
DSP模塊原理
DSP模塊處理來自相干接收機(jī)輸出得到的兩路偏振電信號,經(jīng)過如下圖功能模塊處理,完成原始信號的恢復(fù)。DSP的主要任務(wù)在于對模擬信號進(jìn)行采樣,量化,把模擬信號轉(zhuǎn)換成數(shù)字信號,去除光纖鏈路中的色度色散,偏振模色散,完成載波頻偏估計,載波相位恢復(fù)等功能。
DSP模塊功能框圖
DSP模塊組成
時鐘同步及ADC模塊一般使用插值濾波器來恢復(fù)數(shù)字時鐘,由于符號時鐘(T)與ADC的采樣時鐘(Ts)是相互獨立的,因此為了使得發(fā)射符號時鐘(T)與調(diào)整后的接收機(jī)采樣時鐘(Ti)同步,因此必須調(diào)制接收機(jī)的符號取樣時刻。
使用插值濾波器作為主要的算法是一種較為成熟的恢復(fù)數(shù)字時鐘技術(shù)、為了使數(shù)字接收機(jī)輸出正確的采用型號(與符號時鐘同步),即調(diào)整接收機(jī)的采樣時刻,通常采用開環(huán)結(jié)構(gòu)符號時鐘同步算法。
均衡及偏振解復(fù)用模塊為了處理偏振信號之間的干擾和信道的非理想性,必須運用偏振解復(fù)用和均衡技術(shù)進(jìn)行信號的處理。首先,偏振解復(fù)用的功能是使用特定結(jié)構(gòu)的濾波器實現(xiàn)的,這是為了抵消偏振信號之間的干擾,這種干擾是由傳輸過程中各個偏振信號產(chǎn)生的一定程度的偏轉(zhuǎn)造成的。另外,自適應(yīng)的均衡技術(shù)是為了處理在光纖鏈路傳輸過程中出現(xiàn)的由于非理想性的信道特性造成的損傷,這種線性損傷主要是由一階偏振模色散和光纖造成的。
頻偏估計與相位恢復(fù)模塊為了正確的解調(diào)接收信號,需要完成載波的頻偏估計。主要原因在于:由于沒有對本振信號進(jìn)行反饋控制,接收信號在光相干接收機(jī)中將會出現(xiàn)一個與本地振蕩源的頻率偏遠(yuǎn),因此頻偏估計的方法必須在接收機(jī)中實現(xiàn)。
為什么相干光通信要采用DSP技術(shù),有何優(yōu)勢?相干檢測與DSP技術(shù)相結(jié)合,可以在電域進(jìn)行載波相位同步和偏振跟蹤,清除了傳統(tǒng)相干接收的兩大障礙;基于DSP的相干接收機(jī)結(jié)構(gòu)簡單,具有硬件透明性,可在電域補償各種傳輸損傷,簡化傳輸鏈路,降低傳輸成本;支持多進(jìn)制調(diào)制格式和偏振復(fù)用,實現(xiàn)高頻譜效率的傳輸。
采用DSP技術(shù)有何劣勢,如何解決?由于DSP引入了DAC/ADC與算法,其功耗一定高于傳統(tǒng)基于模擬技術(shù)的CDR芯片。無論對于模塊本身或是未來交換機(jī)的面板熱設(shè)計都是巨大挑戰(zhàn)。因此,其功耗管理及低功耗設(shè)計技術(shù)也成為當(dāng)前研究的熱點。在實際運行中,系統(tǒng)在相當(dāng)一部分的運行時間內(nèi)處于空轉(zhuǎn)或低負(fù)荷狀態(tài),這些時間段內(nèi)系統(tǒng)所額外消耗的能量可以通過低功耗設(shè)計措施加以避免。
低功耗設(shè)計的主要切入點即根據(jù)系統(tǒng)運行的實際負(fù)載,在保證按要求完成處理任務(wù)的前提下,通過合理調(diào)低系統(tǒng)的相關(guān)性能以實現(xiàn)系統(tǒng)的低功耗運行。為了達(dá)到這一目標(biāo),需要在系統(tǒng)中實現(xiàn)可靠的低性能運行機(jī)制,對系統(tǒng)的各個部件進(jìn)行有效監(jiān)控并采用合理的策略對系統(tǒng)功耗加以管理。
相干光通信一直以來是光通信技術(shù)制高點。易飛揚秉承光互連設(shè)計革新者的理念,于2018年初正式投資進(jìn)入相干光模塊開發(fā),開放性地與上游供應(yīng)鏈進(jìn)行戰(zhàn)略合作,在低功耗設(shè)計、信號調(diào)制模型上進(jìn)行優(yōu)化創(chuàng)新,取得了重大成果。
為順利啟動商用,易飛揚邀請國內(nèi)外相關(guān)廠商,在OTN傳輸設(shè)備上進(jìn)行了聯(lián)合測試,在兼容性、業(yè)務(wù)開通和傳輸性能等方面均取得優(yōu)異的效果。測試實驗也充分驗證了當(dāng)前采納的硅基相位調(diào)制器芯片和DSP芯片的卓越性能。聯(lián)合測試結(jié)束后,易飛揚已經(jīng)取得海外客戶相干光模塊的正式訂單。