什么是單相橋式整流電路:
電路中采用四個二極管,互相接成橋式結構。利用二極管的電流導向作用,在交流輸入電壓U2的正半周內,二極管D1、D3導通,D2、D4截止,在負載RL上得到上正下負的輸出電壓;在負半周內,正好相反,D1、D3截止,D2、D4導通,流過負載RL的電流方向與正半周一致。因此,利用變壓器的一個副邊繞組和四個二極管,使得在交流電源的正、負半周內,整流電路的負載上都有方向不變的脈動直流電壓和電流。橋式整流的名稱只是說明電路連接方法是橋式的接法,橋式整流二極管:大家常用的一般是由4只單個二極管封裝在一起的元件,取名橋式整流二極管,整流橋或全橋二極管。
單相橋式整流電路的工作原理:單相橋式整流電路如圖1(a)所示,圖中Tr為電源變壓器,它的作用是將交流電網電壓vI變成整流電路要求的交流電壓 ,RL是要求直流供電的負載電阻,四只整流二極管D1~D4接成電橋的形式,故有橋式整流電路之稱。
單相橋式整流電路的工作原理可分析如下。為簡單起見,二極管用理想模型來處理,即正向導通電阻為零,反向電阻為無窮大。
在v2的正半周,電流從變壓器副邊線圈的上端流出,只能經過二極管D1流向RL,再由二極管D3流回變壓器,所以D1、D3正向導通,D2、D4反偏截止。在負載上產生一個極性為上正下負的輸出電壓。其電流通路可用圖1(a)中實線箭頭表示。
在v2的負半周,其極性與圖示相反,電流從變壓器副邊線圈的下端流出,只能經過二極管D2流向RL,再由二極管D4流回變壓器,所以D1、D3反偏截止,D2、D4正向導通。電流流過RL時產生的電壓極性仍是上正下負,與正半周時相同。其電流通路如圖1(a)中虛線箭頭所示。
綜上所述,橋式整流電路巧妙地利用了二極管的單向導電性,將四個二極管分為兩組,根據變壓器副邊電壓的極性分別導通,將變壓器副邊電壓的正極性端與負載電阻的上端相連,負極性端與負載電阻的下端相連,使負載上始終可以得到一個單方向的脈動電壓。
根據上述分析,可得橋式整流電路的工作波形如圖2。由圖可見,通過負載RL的電流iL以及電壓vL的波形都是單方向的全波脈動波形。
橋式整流電路的優(yōu)點是輸出電壓高,紋波電壓較小,管子所承受的最大反向電壓較低,同時因電源變壓器在正、負半周內都有電流供給負載,電源變壓器得到了充分的利用,效率較高。因此,這種電路在半導體整流電路中得到了頗為廣泛的應用。電路的缺點是二極管用得較多,但目前市場上已有整流橋堆出售,如QL51A~G、QL62A~L等,其中QL62A~L的額定電流為2A,最大反向電壓為25~1000V。
單相整流電路在MATLAB中的仿真操作:1 單相橋式全控整流電路的工作原理單相橋式全控整流電路圖(帶電阻性負載)如圖1所示,電路由交流電源u1、整流變壓器T、晶閘管VT1~4、負載R以及觸發(fā)電路組成。其中晶閘管VT1和VT4、晶閘管VT2和VT3各組成一對橋臂,又由于晶閘管具有單向可控導電性能,所以在變壓器的二次電壓u2的正半周,晶閘管VT1和VT3被觸發(fā),負半周時晶閘管VT2和VT3被觸發(fā)。在u2的正半周時(a點電位高于b點電位),如果4個晶閘管都不導通,負載電流id為0,負載電壓也為0,VT1、VT4串聯(lián)承受電壓u2,設VT1和VT4的漏電阻相等,則各承受u2的一半。若在觸發(fā)角α處給VT1和VT4。加觸發(fā)脈沖,VT1和VT4導通,電流從電源a端經VT1、R、VT4流回電源b端。當u2過0的時候,流過晶閘管的電流也降到0,VT1和VT4關斷。
在u2的正半周時,仍在觸發(fā)延遲角的α處觸發(fā)延遲VT2和VT3(VT2和VT3的α=0處為wt=π),VT2和VT3導通,電流從電源b端流出,經VT3、R、VT2流回電源a端。到u2過0時,電流又降為0,VT2和VT3關斷。此后又是VT1和VT4導通,如此循環(huán)工作下去。
2 單相橋式全控整流電路在MATLAB/Simulink的建模與仿真2.1 單相橋式電路的仿真模型
單相橋式全控整流電路主要由交流電源、晶閘管、RLC負載等構成,其在MATLAB/Simulink仿真模型如圖2所示。由于在SIMULINK庫中沒有專用的單相橋式整流電路的觸發(fā)模塊,這里用三相橋的觸發(fā)器(Synchronized 6-pulse Generator)來產生晶閘管VT1、VT4和VT2、VT3的觸發(fā)脈沖,如圖4所示,用電壓測量取得變壓器二次電壓信號作為觸發(fā)器的同步信號,信號從觸發(fā)器AB端輸入,觸發(fā)器的BC、CA端和BLOCk端用常數(shù)模塊置“0”,Synchronized 6-pulse Generator產生6路觸發(fā)信號,通過Demux分解并與變壓器的二次電壓的相位比較,圖4上為變壓
器二次電壓波形,中間為第6路觸發(fā)脈沖,下為第4路觸發(fā)脈沖,此脈沖信號與正弦信號比較的時候,這二路信號可以滿足單相橋的觸發(fā)和移相控制要求,因此將第6路觸發(fā)脈沖連接VT1和VT4控制板,第4路觸發(fā)脈沖連接VT2和VT3控制板。
2.2 仿真參數(shù)設置
(1)電壓源參數(shù)。電壓源為AC,電壓為220V,頻率50Hz,輸入電壓峰值為220*sqrt(2)。
(2)變壓器參數(shù)。電壓為220V(有效值),二次電壓為100V(有效值)。
(3)晶閘管使用默認參數(shù)。
(4)負載RLC的參數(shù)。根據具體情況設置
(5)脈沖發(fā)生器Synchronized 6-pulse Generator的參數(shù):同步頻率為50Hz,脈沖寬度取10°。
(6)電阻負載角度α參數(shù):α=0°、30°、60°、120°。
(7)系統(tǒng)仿真參數(shù):開始時間選0,可變步長,仿真數(shù)值選ode23,誤差選擇0.001。
2.3 仿真結果及其分析
圖3~5為電阻性負載時的電壓和電流輸出波形,圖6~8為阻感負載時的電壓和電流的輸出波形。圖3和圖4波形表明電壓和電流都是脈動的,電源的交流電經過整流器后成為了直流電,實現(xiàn)了整流的功能,波形呈現(xiàn)周期性正弦半波,整流后的電壓和電流形狀相似。圖3、圖4和圖5的電壓電流波形已隨控制角變化,隨著控制角的增加,輸出電壓的平均值減小,輸出電流也隨之下降。圖6~圖相比較圖3~5,整流輸出電流脈動明顯小,說明輸出電感具有濾波的作用。
本文在MATLAB軟件中對單相橋式全控整流電路進行了建模與仿真,分別在負載為0°、30°和60°時對電路進行了仿真,得出的結果與理論相一致,為技術人員學習和生活中的各種應用提供了很好的思路。
3次