當(dāng)前位置:首頁 > 電源 > 電源AC/DC
[導(dǎo)讀]ADI推出GSPS數(shù)據(jù)轉(zhuǎn)換器拯救電子監(jiān)控與對(duì)抗系統(tǒng) 頻譜擁堵、更高工作頻率和更復(fù)雜的波形,給電子監(jiān)控與對(duì)抗系統(tǒng)帶來層出不窮的問題,需要偵測(cè)的帶寬越來越大,檢測(cè)靈敏度要

ADI推出GSPS數(shù)據(jù)轉(zhuǎn)換器拯救電子監(jiān)控與對(duì)抗系統(tǒng)

頻譜擁堵、更高工作頻率和更復(fù)雜的波形,給電子監(jiān)控與對(duì)抗系統(tǒng)帶來層出不窮的問題,需要偵測(cè)的帶寬越來越大,檢測(cè)靈敏度要求也越來越高。隨著越來越多的功能通過數(shù)字域?qū)崿F(xiàn),上述帶寬和靈敏度兩個(gè)因素,加上成本,直接把高速模數(shù)轉(zhuǎn)換器(ADC)的性能推向極限,常常使ADC成為系統(tǒng)的局限所在。所幸的是,新一代高速ADC的性能水平符合要求,可提供一些系統(tǒng)級(jí)解決方案來應(yīng)對(duì)這些挑戰(zhàn)。

現(xiàn)代監(jiān)控系統(tǒng)的架構(gòu)如圖1所示,它包括三個(gè)基本功能:

●射頻/微波調(diào)諧器

●數(shù)字化儀,ADC及相關(guān)的放大器和緩沖器

●快速傅里葉變換和數(shù)字信號(hào)處理

很多情況下,高速ADC性能——從模擬域到數(shù)字域的轉(zhuǎn)換——成為系統(tǒng)的限制因素。盡管最大限度降低成本和系統(tǒng)尺寸始終極其重要,但系統(tǒng)設(shè)計(jì)人員還必須關(guān)注如何最佳地平衡提高瞬時(shí)監(jiān)控帶寬的需求(以便最大限度提高攔截概率),以及如何將帶內(nèi)高功率信號(hào)降低系統(tǒng)靈敏度的影響減至最少。



表1:高線性度低速ADC與過去和現(xiàn)在的GSPS ADC的對(duì)比


關(guān)于如何達(dá)到系統(tǒng)指標(biāo)和已確定的取舍要求,ADC的采樣速率和無雜散動(dòng)態(tài)范圍(SFDR)通常是影響決策的兩大主要因素。轉(zhuǎn)換器的采樣速率決定奈奎斯特頻段,進(jìn)而決定個(gè)別轉(zhuǎn)換器的最大可觀測(cè)帶寬;SFDR決定可檢測(cè)的信號(hào)電平。雖然噪聲頻譜密度可能也需要考慮,但在多數(shù)情況下,ADC的噪底遠(yuǎn)低于雜散水平,而且從系統(tǒng)運(yùn)行角度看,數(shù)字化過程中產(chǎn)生的雜散與頻譜中進(jìn)行數(shù)字化的低功率信號(hào)難以區(qū)分。因此,系統(tǒng)的靈敏度與SFDR直接相關(guān),這樣檢測(cè)到假目標(biāo)的可能性最低。

例如,考慮對(duì)兩個(gè)連續(xù)波(CW)信號(hào)進(jìn)行數(shù)字化處理,信號(hào)A是一個(gè)滿量程輸入,信號(hào)B的功率則低得多。作為目標(biāo)信號(hào)的信號(hào)B與數(shù)字化信號(hào)A所產(chǎn)生的雜散可能難以區(qū)別,因?yàn)槎叩碾娖较嗨?。所以,信?hào)B可能低于系統(tǒng)的檢測(cè)電平,不會(huì)被標(biāo)示為目標(biāo)信號(hào)。



圖1:監(jiān)控系統(tǒng)基本架構(gòu)


諸如此類的限制表明:利用具有超高線性度的ADC可實(shí)現(xiàn)最佳檢測(cè)電平,但高線性度傳統(tǒng)上是通過犧牲ADC采樣速率來實(shí)現(xiàn)的。為了方便討論,本文考慮一個(gè)通用電子監(jiān)控系統(tǒng),但類似的系統(tǒng)架構(gòu)權(quán)衡也適用于電子情報(bào)(ELINT)、信號(hào)情報(bào)(SIGINT)和通信情報(bào)(COMINT)。此類系統(tǒng)一般有三種不同系統(tǒng)架構(gòu)可供考慮(參見圖2)。

圖2A所示為最簡(jiǎn)單的系統(tǒng)。采用高線性度ADC,例如ADI公司的AD9265(其在70 MHz中頻輸入時(shí)具有93 dBc的SFDR和79 dBFS的信噪比(SNR),這種架構(gòu)可提供出色的靈敏度和檢測(cè)性能,但最大采樣速率只有125 MSPS.這是以瞬時(shí)帶寬為代價(jià)而獲得的,不考慮抗混疊濾波器時(shí)的最大瞬時(shí)帶寬為62.5 MHz,通常要降低到40 MHz或更低。系統(tǒng)中只有一個(gè)轉(zhuǎn)換器,系統(tǒng)成本很低,但射頻調(diào)諧器不得不以40 MHz的步幅掃描整個(gè)射頻帶寬,這會(huì)降低攔截某些信號(hào)的概率。

為了提高帶寬,一種顯而易見的方法是交錯(cuò)使用多個(gè)高線性度、低采樣速率的轉(zhuǎn)換器,將其連接到單個(gè)寬帶射頻調(diào)諧器(圖2B),從而提高有效采樣速率和瞬時(shí)帶寬。例如,若交錯(cuò)使用8個(gè)AD9265 ADC,總有效采樣速率將達(dá)到1 GSPS,支持的瞬時(shí)帶寬接近500 MHz.射頻調(diào)諧器只需以500 MHz的步幅掃描,因此射頻頻譜的偵測(cè)速度會(huì)快得多,攔截目標(biāo)信號(hào)(尤其是捷變信號(hào))的概率更高。另外,系統(tǒng)僅使用一個(gè)射頻調(diào)諧器,與圖2A相比,成本增加有限。

雖然這確實(shí)給射頻調(diào)諧器帶來更多難題(更寬的帶寬帶來的難題是要保持與前述架構(gòu)相似的IP3和噪聲性能),但這種方法的主要不足是交錯(cuò)ADC方面。各轉(zhuǎn)換器在增益、直流失調(diào)和相位方面的失配,需要通過校準(zhǔn)從系統(tǒng)中消除或利用數(shù)字信號(hào)處理加以管理,但即便這樣,SFDR、噪底或帶寬通常也會(huì)有一定的下降,導(dǎo)致此架構(gòu)性能降低。對(duì)于監(jiān)控帶寬內(nèi)的超高功率信號(hào),系統(tǒng)可能不太敏感,使問題進(jìn)一步惡化。500 MHz頻段任意地方的這種信號(hào)都要求降低射頻和中頻增益,從而限制了低功率信號(hào)的攔截概率。

最高性能的架構(gòu)如圖2C所示,其中實(shí)現(xiàn)了多個(gè)并行射頻與數(shù)字化儀子系統(tǒng),如果同樣使用AD9265,則可以同時(shí)觀測(cè)到多個(gè)相鄰40MHz頻段。讓每個(gè)子系統(tǒng)偏移大約40 MHz(需要一些交疊),可以提高瞬時(shí)帶寬,但很顯然,這是以系統(tǒng)成本為代價(jià),系統(tǒng)成本與瞬時(shí)帶寬成正比。與交錯(cuò)方法相比,這種架構(gòu)的好處是無需通過校準(zhǔn)或數(shù)字信號(hào)處理來消除交錯(cuò)引起的雜散。此外,該系統(tǒng)抑制高功率阻塞或干擾的能力更強(qiáng),因?yàn)楦?0 MHz頻段的射頻/中頻增益可以獨(dú)立設(shè)置。



圖2:監(jiān)控系統(tǒng)架構(gòu)選項(xiàng)


上述系統(tǒng)架構(gòu)已在當(dāng)今各種系統(tǒng)中采用,但如圖中所示,每種架構(gòu)在性能、成本,還有可能是尺寸上存在限制。然而,最新的GSPS ADC可能很快就會(huì)打破現(xiàn)狀,這種ADC具備更高的線性度和嵌入式數(shù)字信號(hào)處理特性。AD9625和AD9680等新型ADC提供1.25 GSPS到2.5 GSPS的采樣速率,SFDR高達(dá)85 dBc.

GSPS ADC的線性度比不上低采樣速率的器件,但可以看出,差距正在縮小。使用單個(gè)GSPS ADC就能實(shí)現(xiàn)圖2B所示的架構(gòu),同時(shí)不會(huì)有交錯(cuò)帶來的缺點(diǎn)。此外,更高的線性度可提高檢測(cè)靈敏度,并將干擾和阻塞的影響降至最小,縮小這種架構(gòu)與圖2中圖2C所示系統(tǒng)的性能差距,而且成本更低,尺寸更小。

然而,雖然這一方面能促成新系統(tǒng)架構(gòu)的出現(xiàn),但這些新器件更激動(dòng)人心的方面是它們還能在轉(zhuǎn)換器的模數(shù)轉(zhuǎn)換級(jí)之后實(shí)現(xiàn)數(shù)字信號(hào)處理功能。65 nm CMOS工藝支持在轉(zhuǎn)換器中實(shí)現(xiàn)更高速度的數(shù)字信號(hào)處理。例如,AD9625和AD9680均實(shí)現(xiàn)了數(shù)字下變頻(DDC)功能,因而高速ADC可動(dòng)態(tài)改變帶寬——從全帶寬到1,000MHz以上的數(shù)字化奈奎斯特頻段內(nèi)的可選子頻段。在圖3所示的架構(gòu)中,2.5 GSPS、12位ADC AD9625帶有嵌入式DSP選項(xiàng)。

在寬帶模式下,這種ADC支持以1GHz步幅監(jiān)控射頻頻譜,以便快速評(píng)估射頻圖景。一旦確定目標(biāo)信號(hào),便可將此數(shù)據(jù)引導(dǎo)至DDC.DDC使用數(shù)字控制振蕩器(NCO)和濾波級(jí),可從轉(zhuǎn)換器奈奎斯特頻段內(nèi)的任何地方選擇一個(gè)頻段,并進(jìn)行8倍或16倍的數(shù)字抽取,從而進(jìn)一步抑制噪底。雖然這一功能可以在器件中轉(zhuǎn)換器之后的數(shù)字信號(hào)處理級(jí)中輕松實(shí)現(xiàn),但在ADC本身中執(zhí)行有助于降低ADC的輸出數(shù)據(jù)速率,更重要的是,可以降低傳輸功耗。因此,使用DDC時(shí),系統(tǒng)功耗顯著降低。



圖3:帶可選且可旁路嵌入式數(shù)字下變頻器的2.5GSPS ADC


航空航天和防務(wù)系統(tǒng)持續(xù)重視縮減尺寸、重量和功耗(SWaP),隨著GSPS領(lǐng)域的高速轉(zhuǎn)換器的線性度不斷提高,系統(tǒng)架構(gòu)師開始探索新的選項(xiàng)。把數(shù)字信號(hào)處理集成到高速轉(zhuǎn)換器內(nèi)部后,一系列選項(xiàng)和系統(tǒng)優(yōu)化方法開始顯露出來,現(xiàn)階段因而成為新一代監(jiān)控系統(tǒng)開發(fā)的一個(gè)令人興奮的時(shí)期。

本站聲明: 本文章由作者或相關(guān)機(jī)構(gòu)授權(quán)發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點(diǎn),本站亦不保證或承諾內(nèi)容真實(shí)性等。需要轉(zhuǎn)載請(qǐng)聯(lián)系該專欄作者,如若文章內(nèi)容侵犯您的權(quán)益,請(qǐng)及時(shí)聯(lián)系本站刪除。
換一批
延伸閱讀

9月2日消息,不造車的華為或?qū)⒋呱龈蟮莫?dú)角獸公司,隨著阿維塔和賽力斯的入局,華為引望愈發(fā)顯得引人矚目。

關(guān)鍵字: 阿維塔 塞力斯 華為

倫敦2024年8月29日 /美通社/ -- 英國(guó)汽車技術(shù)公司SODA.Auto推出其旗艦產(chǎn)品SODA V,這是全球首款涵蓋汽車工程師從創(chuàng)意到認(rèn)證的所有需求的工具,可用于創(chuàng)建軟件定義汽車。 SODA V工具的開發(fā)耗時(shí)1.5...

關(guān)鍵字: 汽車 人工智能 智能驅(qū)動(dòng) BSP

北京2024年8月28日 /美通社/ -- 越來越多用戶希望企業(yè)業(yè)務(wù)能7×24不間斷運(yùn)行,同時(shí)企業(yè)卻面臨越來越多業(yè)務(wù)中斷的風(fēng)險(xiǎn),如企業(yè)系統(tǒng)復(fù)雜性的增加,頻繁的功能更新和發(fā)布等。如何確保業(yè)務(wù)連續(xù)性,提升韌性,成...

關(guān)鍵字: 亞馬遜 解密 控制平面 BSP

8月30日消息,據(jù)媒體報(bào)道,騰訊和網(wǎng)易近期正在縮減他們對(duì)日本游戲市場(chǎng)的投資。

關(guān)鍵字: 騰訊 編碼器 CPU

8月28日消息,今天上午,2024中國(guó)國(guó)際大數(shù)據(jù)產(chǎn)業(yè)博覽會(huì)開幕式在貴陽舉行,華為董事、質(zhì)量流程IT總裁陶景文發(fā)表了演講。

關(guān)鍵字: 華為 12nm EDA 半導(dǎo)體

8月28日消息,在2024中國(guó)國(guó)際大數(shù)據(jù)產(chǎn)業(yè)博覽會(huì)上,華為常務(wù)董事、華為云CEO張平安發(fā)表演講稱,數(shù)字世界的話語權(quán)最終是由生態(tài)的繁榮決定的。

關(guān)鍵字: 華為 12nm 手機(jī) 衛(wèi)星通信

要點(diǎn): 有效應(yīng)對(duì)環(huán)境變化,經(jīng)營(yíng)業(yè)績(jī)穩(wěn)中有升 落實(shí)提質(zhì)增效舉措,毛利潤(rùn)率延續(xù)升勢(shì) 戰(zhàn)略布局成效顯著,戰(zhàn)新業(yè)務(wù)引領(lǐng)增長(zhǎng) 以科技創(chuàng)新為引領(lǐng),提升企業(yè)核心競(jìng)爭(zhēng)力 堅(jiān)持高質(zhì)量發(fā)展策略,塑強(qiáng)核心競(jìng)爭(zhēng)優(yōu)勢(shì)...

關(guān)鍵字: 通信 BSP 電信運(yùn)營(yíng)商 數(shù)字經(jīng)濟(jì)

北京2024年8月27日 /美通社/ -- 8月21日,由中央廣播電視總臺(tái)與中國(guó)電影電視技術(shù)學(xué)會(huì)聯(lián)合牽頭組建的NVI技術(shù)創(chuàng)新聯(lián)盟在BIRTV2024超高清全產(chǎn)業(yè)鏈發(fā)展研討會(huì)上宣布正式成立。 活動(dòng)現(xiàn)場(chǎng) NVI技術(shù)創(chuàng)新聯(lián)...

關(guān)鍵字: VI 傳輸協(xié)議 音頻 BSP

北京2024年8月27日 /美通社/ -- 在8月23日舉辦的2024年長(zhǎng)三角生態(tài)綠色一體化發(fā)展示范區(qū)聯(lián)合招商會(huì)上,軟通動(dòng)力信息技術(shù)(集團(tuán))股份有限公司(以下簡(jiǎn)稱"軟通動(dòng)力")與長(zhǎng)三角投資(上海)有限...

關(guān)鍵字: BSP 信息技術(shù)
關(guān)閉
關(guān)閉