當(dāng)前位置:首頁 > 模擬 > 模擬
[導(dǎo)讀]摘 要:提出一種在不增加分?jǐn)?shù)階微分濾波器復(fù)雜度的前提下,能有效提高分?jǐn)?shù)階微分濾波器性能的方法。該方法利用幾種基于典型微分算子的分?jǐn)?shù)階微分濾波器之間的互補(bǔ)性,通過相互內(nèi)插結(jié)合的方式,用于提高IIR分?jǐn)?shù)階數(shù)字

摘 要:提出一種在不增加分?jǐn)?shù)階微分濾波器復(fù)雜度的前提下,能有效提高分?jǐn)?shù)階微分濾波器性能的方法。該方法利用幾種基于典型微分算子的分?jǐn)?shù)階微分濾波器之間的互補(bǔ)性,通過相互內(nèi)插結(jié)合的方式,用于提高IIR分?jǐn)?shù)階數(shù)字濾波器的性能。改進(jìn)后的分?jǐn)?shù)階微分濾波器頻率響應(yīng)更接近理想分?jǐn)?shù)階微分濾波器,表明所提方法的有效性。
關(guān)鍵詞:分?jǐn)?shù)階微積分;數(shù)字微分器;IIR濾波器;微分算子;連續(xù)分?jǐn)?shù)擴(kuò)充


0 引 言
    分?jǐn)?shù)階微積分是一個(gè)既古老又現(xiàn)代的話題。早在整數(shù)階微積分產(chǎn)生的時(shí)候分?jǐn)?shù)階微積分就產(chǎn)生了,該問題曾被許多數(shù)學(xué)家,如Leibniz(1695),Euler(1738),Liouville(1850),Hardy和Littlewood(1925)等涉及和探究過。雖然分?jǐn)?shù)階微積分的研究難度很大,但近三百年在眾多科學(xué)家的不懈努力下,分?jǐn)?shù)階微積分作為純數(shù)學(xué)分支已經(jīng)發(fā)展?jié)u成體系,但其物理意義不明確,阻礙了分?jǐn)?shù)維微積分的應(yīng)用,目前在工程技術(shù)界中沒有得到廣泛應(yīng)用。從Mandelbrot提出分形學(xué)說,將Rie—mann—Liouville分?jǐn)?shù)階微積分用以分析和研究分形媒介中的布朗運(yùn)動(dòng)以來,分?jǐn)?shù)階微積分才在許多學(xué)科,特別是在化學(xué)、電磁學(xué)、控制學(xué)、材料科學(xué)和力學(xué)中引起廣泛關(guān)注并嘗試著應(yīng)用。隨信息科學(xué)的變革和迅猛發(fā)展,分?jǐn)?shù)階運(yùn)算在很多問題的處理過程中所擁有整數(shù)階運(yùn)算無可比擬的優(yōu)點(diǎn)正逐漸顯露出來。
    目前分?jǐn)?shù)階濾波器已經(jīng)在分?jǐn)?shù)階控制器、信號處理、圖像壓縮和處理等領(lǐng)域得到成功應(yīng)用。分?jǐn)?shù)階數(shù)字分?jǐn)?shù)階微分濾波器的設(shè)計(jì)和改進(jìn),正成為分?jǐn)?shù)階微積分研究領(lǐng)域的一個(gè)熱點(diǎn)。數(shù)字微分濾波器的設(shè)計(jì)方法通??梢詺w為2類:第一種是線性相位F1R濾波器方法;另一種是IIR濾波器法??紤]到濾波器設(shè)計(jì)復(fù)雜度因素,F(xiàn)IR微分濾波器階數(shù)會受到限制,影響了其頻率響應(yīng)對理想頻率響應(yīng)的逼近效果,因此這里考慮使用IIR分?jǐn)?shù)階微分濾波器來實(shí)現(xiàn)分?jǐn)?shù)階運(yùn)算。
    IIR分?jǐn)?shù)階數(shù)字微分濾波器設(shè)計(jì)的重點(diǎn)是實(shí)現(xiàn)分?jǐn)?shù)階算子的離散化,即是找到一個(gè)函數(shù)Gv(z),使其頻率響應(yīng)無限逼近理想分?jǐn)?shù)階數(shù)字微分器的頻率響應(yīng)Hv(ω)=(jω)v?;静襟E可以歸納為:首先,找到頻率響應(yīng)接近理想一階微分的算子;然后基于所選用的微分算子,推導(dǎo)出分?jǐn)?shù)階微分濾波器傳輸函數(shù);最后通過各種展開方法把傳輸函數(shù)的分?jǐn)?shù)階形式轉(zhuǎn)化為整數(shù)階濾波器形式。完成分?jǐn)?shù)階展開的常用方法有冪級數(shù)展開(PSE)和連續(xù)分?jǐn)?shù)擴(kuò)充(CFE),其中連續(xù)分?jǐn)?shù)擴(kuò)充方法對函數(shù)的逼近更好,收斂更快。
    首先對Rectangular算子、Tustin算子、Simpson算子這幾種典型微分算子通過連續(xù)分?jǐn)?shù)擴(kuò)充,得到相應(yīng)的0.5階微分濾波器頻率響應(yīng)。通過分析這幾種算子的頻率響應(yīng)表明,基于這幾種典型算子的分?jǐn)?shù)階微分濾波器各有優(yōu)缺點(diǎn)和具有互補(bǔ)性,將這幾種典型算子進(jìn)行結(jié)合可得到更接近理想分?jǐn)?shù)階微分算子頻率響應(yīng)的算子。


1 典型IIR分?jǐn)?shù)階微分濾波器
1.1 基于Simpson算子的IIR分?jǐn)?shù)階數(shù)字微分濾波器
    Simpson微分算子表示為:

   
    GvSn(z)中v表示微分階數(shù);n表示濾波器階數(shù)。圖1是基于Simpson算子的O.5階微分濾波器的頻率響應(yīng)曲線圖。

    在此使用連續(xù)分?jǐn)?shù)擴(kuò)充(CFE)方法完成對上式的展開,這里簡要介紹分?jǐn)?shù)階算子實(shí)現(xiàn)過程中使用到的CFE方法。對于任何一個(gè)函數(shù)D(z),可以用下面連續(xù)分?jǐn)?shù)的形式來表示:

   
式中,系數(shù)ai,bi是關(guān)于變量z的有理函數(shù)或常數(shù)。只需要通過截?cái)嗖僮?,就能得到有限階逼近函數(shù)。下面列出T=0.001 s時(shí),使用連續(xù)分?jǐn)?shù)擴(kuò)展(CFE)完成上式的展開,得到0.5階微分的Simpson分?jǐn)?shù)階微分濾波器傳遞函數(shù)GvSn(z):


    通過對比和分析,從誤差和計(jì)算復(fù)雜度兩個(gè)方面均衡考慮分?jǐn)?shù)階微分濾波器階數(shù)的選為5階比較合適。因此這里濾波器的階數(shù)都選為5階。
1.2 基于Rectangular算子的IIR分?jǐn)?shù)階數(shù)字微分濾波器
    .Rectangular算子表示為:

   
    基于Rectangular算子的分?jǐn)?shù)階微分器傳輸函數(shù)可以寫為:

   
    這里使用連續(xù)分?jǐn)?shù)擴(kuò)充(CFE)法將展開上式,實(shí)現(xiàn)對函數(shù)的有限階逼近。下面列出T=0.001 s時(shí),O.5階微分Rectangular分?jǐn)?shù)階微分濾波器傳遞函數(shù)GvRn(z):


    GvRn(z)中v表示微分階數(shù);n表示濾波器階數(shù)。
1.3 基于Tustin算子的IIR分?jǐn)?shù)階數(shù)字微分濾波器
    Tustin算子表示為:

   
    基于Tustin算子的分?jǐn)?shù)階微分器傳輸函數(shù)可以寫為:

   
    使用連續(xù)分?jǐn)?shù)擴(kuò)充(CFE)方法將上式展開,完成對函數(shù)的有限階逼近。下面列出了T=0.001 s時(shí),0.5階微分Tustin分?jǐn)?shù)階微分濾波器傳遞函數(shù)GvTn(z):

   
    GvTn中v表示微分階數(shù);n表示濾波器階數(shù)。
    圖2是基于典型Rectangular算子、Tustin算子和simpson算子的0.5階微分濾波器的頻率特性曲線,所實(shí)現(xiàn)的濾波器階數(shù)都是5階。從圖2中可以看出3種濾波器在低頻區(qū)域,幅度曲線還能與理想幅度一致,但隨著頻率增加,特別是在高頻區(qū)域,誤差迅速增大。

    從圖2中可以看出,基于Rectangular濾波器的幅度特性最好,但相位特性明顯比另兩種算子的差。Tustin的優(yōu)點(diǎn)在于其相位特性非常好,相位曲線絕大部分區(qū)域都與理想頻率響應(yīng)相位曲線重合。Tustin和Sirepson有很強(qiáng)互補(bǔ)性。因?yàn)閮烧咴诘皖l的表現(xiàn)都比較好,雖然在高頻都有明顯誤差,但兩者的幅度曲線分別位于理想頻率曲線的上下兩側(cè)。因此,這里認(rèn)為通過這3種算子的相互結(jié)合,可以得到一種新的、頻率特性更好的微分算子。


2 通過內(nèi)插結(jié)合形成新分?jǐn)?shù)階微分濾波器
2.1 基于Rectangular算子和Tustin算子內(nèi)插結(jié)合的分?jǐn)?shù)階微分濾波器
    通過觀察發(fā)現(xiàn)矩形(Rectangular)濾波器和梯形(Tustin)濾波器分別具有最好的幅頻和相頻特性,因此將這兩種濾波器通過內(nèi)插結(jié)合,可獲得更好的近似理想積分器。
    由于微分和積分的互逆性,首先推導(dǎo)新的積分算子HA(z)。用下標(biāo)A表示結(jié)合后積分器,用下標(biāo)R表示矩形積分器,用下標(biāo)T表示梯形積分器,其積分算子的傳輸函數(shù)由Rectangular算子和Tustin算子按3:1的比率結(jié)合獲得。積分器傳輸函數(shù)如下所示:


    其零點(diǎn)不在單位圓內(nèi)將零點(diǎn)z=一7映射到z=一1/7,通過乘以7對幅度進(jìn)行相應(yīng)補(bǔ)償,獲得最小相位積分器如下:


    下面是T=O.001 s時(shí),使用該算子實(shí)現(xiàn)0.5階微分的IIR分?jǐn)?shù)階微分濾波器傳遞函數(shù)GvAn(z):


2.2 基于Tustin算子和Simpson算子內(nèi)插結(jié)合的分?jǐn)?shù)階微分濾波器
    同樣通過觀察發(fā)現(xiàn)Tustin算子和Simpson算子雖然在高頻都有明顯誤差,但兩者的幅度曲線分別位于理想頻率曲線的上下兩側(cè),以期通過內(nèi)插結(jié)合相互抵消,而獲得性能更好的濾波器。新的積分算子HB(z)傳輸函數(shù)通過梯形(Tustin)算子和辛普森(Simpson)算子按2:3比例結(jié)合獲得。


圓內(nèi)。為了構(gòu)造最小相位系統(tǒng),將零點(diǎn)r2映射到其倒數(shù)r1上。同時(shí)為了使幅度保持不變,引入補(bǔ)償因子一r2。獲得的積分算子如下:


    積分算子的極點(diǎn)是1和一1,在單位圓上,不滿足系統(tǒng)穩(wěn)定性,但經(jīng)過后面連續(xù)分?jǐn)?shù)擴(kuò)充方法截?cái)嗪?,可以使極點(diǎn)都在單位圓內(nèi)。
    下面是T=O.001 s時(shí),使用新算子B實(shí)現(xiàn)0.5階微分的IIR分?jǐn)?shù)階微分濾波器函數(shù)GvBn(z):


2.3 基于Rectangular算子和Simpson算子內(nèi)插結(jié)合的分?jǐn)?shù)階微分濾波器
    同樣將Rectangular算子和Simpson算子結(jié)合也可以形成新算子。新的積分算子HC(z)傳輸函數(shù)通過矩形(Rectangular)算子和辛普森(Simpson)算子按5:3比例結(jié)合獲得:

相位系統(tǒng),將零點(diǎn)r2映射到其倒數(shù)1/r2上。同時(shí)為了使幅度保持不變,引入補(bǔ)償因子一r2。獲得的積分算子
如下:


    積分算子的極點(diǎn)是1和一1,在單位圓上,不滿足系統(tǒng)穩(wěn)定性,但經(jīng)過后面連續(xù)分?jǐn)?shù)擴(kuò)充方法截短后,可以使極點(diǎn)都在單位圓內(nèi)。
    下面是T=0.001 s時(shí),使用新算子C實(shí)現(xiàn)0.5階微分的IIR分?jǐn)?shù)階微分濾波器函數(shù)GvCn(z):


    圖3顯示的是通過相互結(jié)合的3種新算子的分?jǐn)?shù)階微分濾波器頻率響應(yīng)??梢钥闯觯滤阕又蠥相比B和C具有更好的頻率特性。其幅度特性曲線從低頻到高頻都基本接近理想頻率響應(yīng)曲線。新算子中A的相位特性隨頻率的增大,相位延遲近似線性增加,可以引入分?jǐn)?shù)階延遲濾波器來進(jìn)一步改進(jìn)相位特性。

3 結(jié) 語
    主要從頻域角度出發(fā),對分?jǐn)?shù)階微分IIR濾波器的設(shè)計(jì)以及實(shí)現(xiàn)進(jìn)行了深入分析。分?jǐn)?shù)階微分IIR濾波器的實(shí)現(xiàn)有兩個(gè)重要的步驟。首先,找到合適的微分算子,所選算子的頻率響應(yīng)逼近理想分?jǐn)?shù)階微分頻率響應(yīng)的程度直接影響到所實(shí)現(xiàn)濾波器的表現(xiàn);其次,要使用合適的展開方法把傳輸函數(shù)從分?jǐn)?shù)階形式轉(zhuǎn)化成整數(shù)階濾波器的形式,連續(xù)分?jǐn)?shù)擴(kuò)充(CFE)方法是一種廣泛使用并有良好效果的方法。這里通過將幾種典型算子進(jìn)行內(nèi)插結(jié)合獲得了一種整體更接近理想頻率響應(yīng)的算子,使用連續(xù)分?jǐn)?shù)擴(kuò)充(CFE)方法,完成了分?jǐn)?shù)階微分IIR濾波器的數(shù)字實(shí)現(xiàn),通過新算子頻率響應(yīng)的對比分析,分?jǐn)?shù)階微分濾波器的性能獲得了明顯的提高。

本站聲明: 本文章由作者或相關(guān)機(jī)構(gòu)授權(quán)發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點(diǎn),本站亦不保證或承諾內(nèi)容真實(shí)性等。需要轉(zhuǎn)載請聯(lián)系該專欄作者,如若文章內(nèi)容侵犯您的權(quán)益,請及時(shí)聯(lián)系本站刪除。
換一批
延伸閱讀

9月2日消息,不造車的華為或?qū)⒋呱龈蟮莫?dú)角獸公司,隨著阿維塔和賽力斯的入局,華為引望愈發(fā)顯得引人矚目。

關(guān)鍵字: 阿維塔 塞力斯 華為

加利福尼亞州圣克拉拉縣2024年8月30日 /美通社/ -- 數(shù)字化轉(zhuǎn)型技術(shù)解決方案公司Trianz今天宣布,該公司與Amazon Web Services (AWS)簽訂了...

關(guān)鍵字: AWS AN BSP 數(shù)字化

倫敦2024年8月29日 /美通社/ -- 英國汽車技術(shù)公司SODA.Auto推出其旗艦產(chǎn)品SODA V,這是全球首款涵蓋汽車工程師從創(chuàng)意到認(rèn)證的所有需求的工具,可用于創(chuàng)建軟件定義汽車。 SODA V工具的開發(fā)耗時(shí)1.5...

關(guān)鍵字: 汽車 人工智能 智能驅(qū)動(dòng) BSP

北京2024年8月28日 /美通社/ -- 越來越多用戶希望企業(yè)業(yè)務(wù)能7×24不間斷運(yùn)行,同時(shí)企業(yè)卻面臨越來越多業(yè)務(wù)中斷的風(fēng)險(xiǎn),如企業(yè)系統(tǒng)復(fù)雜性的增加,頻繁的功能更新和發(fā)布等。如何確保業(yè)務(wù)連續(xù)性,提升韌性,成...

關(guān)鍵字: 亞馬遜 解密 控制平面 BSP

8月30日消息,據(jù)媒體報(bào)道,騰訊和網(wǎng)易近期正在縮減他們對日本游戲市場的投資。

關(guān)鍵字: 騰訊 編碼器 CPU

8月28日消息,今天上午,2024中國國際大數(shù)據(jù)產(chǎn)業(yè)博覽會開幕式在貴陽舉行,華為董事、質(zhì)量流程IT總裁陶景文發(fā)表了演講。

關(guān)鍵字: 華為 12nm EDA 半導(dǎo)體

8月28日消息,在2024中國國際大數(shù)據(jù)產(chǎn)業(yè)博覽會上,華為常務(wù)董事、華為云CEO張平安發(fā)表演講稱,數(shù)字世界的話語權(quán)最終是由生態(tài)的繁榮決定的。

關(guān)鍵字: 華為 12nm 手機(jī) 衛(wèi)星通信

要點(diǎn): 有效應(yīng)對環(huán)境變化,經(jīng)營業(yè)績穩(wěn)中有升 落實(shí)提質(zhì)增效舉措,毛利潤率延續(xù)升勢 戰(zhàn)略布局成效顯著,戰(zhàn)新業(yè)務(wù)引領(lǐng)增長 以科技創(chuàng)新為引領(lǐng),提升企業(yè)核心競爭力 堅(jiān)持高質(zhì)量發(fā)展策略,塑強(qiáng)核心競爭優(yōu)勢...

關(guān)鍵字: 通信 BSP 電信運(yùn)營商 數(shù)字經(jīng)濟(jì)

北京2024年8月27日 /美通社/ -- 8月21日,由中央廣播電視總臺與中國電影電視技術(shù)學(xué)會聯(lián)合牽頭組建的NVI技術(shù)創(chuàng)新聯(lián)盟在BIRTV2024超高清全產(chǎn)業(yè)鏈發(fā)展研討會上宣布正式成立。 活動(dòng)現(xiàn)場 NVI技術(shù)創(chuàng)新聯(lián)...

關(guān)鍵字: VI 傳輸協(xié)議 音頻 BSP

北京2024年8月27日 /美通社/ -- 在8月23日舉辦的2024年長三角生態(tài)綠色一體化發(fā)展示范區(qū)聯(lián)合招商會上,軟通動(dòng)力信息技術(shù)(集團(tuán))股份有限公司(以下簡稱"軟通動(dòng)力")與長三角投資(上海)有限...

關(guān)鍵字: BSP 信息技術(shù)
關(guān)閉
關(guān)閉