當(dāng)前位置:首頁 > 模擬 > 模擬
[導(dǎo)讀]1 引 言隨著計(jì)算機(jī)網(wǎng)絡(luò)和通信技術(shù)的發(fā)展,信息安全、知識(shí)產(chǎn)權(quán)保護(hù)和身份認(rèn)證等問題成了一個(gè)重要而緊迫的研究課題。身份認(rèn)證是保證系統(tǒng)安全的必要前提,在多種不同的安全領(lǐng)域都需要準(zhǔn)確的身份認(rèn)證。傳統(tǒng)的身份證、智能

1 引 言

隨著計(jì)算機(jī)網(wǎng)絡(luò)和通信技術(shù)的發(fā)展,信息安全、知識(shí)產(chǎn)權(quán)保護(hù)和身份認(rèn)證等問題成了一個(gè)重要而緊迫的研究課題。身份認(rèn)證是保證系統(tǒng)安全的必要前提,在多種不同的安全領(lǐng)域都需要準(zhǔn)確的身份認(rèn)證。傳統(tǒng)的身份證、智能卡、密碼等身份認(rèn)證方法存在攜帶不便、容易遺失、不可讀或密碼易被破解等諸多問題。基于人臉識(shí)別技術(shù)的身份認(rèn)證方法與傳統(tǒng)的方法相比,具有更好的安全性、可靠性和有效性,因此正越來越受到人們的重視,并逐漸進(jìn)入社會(huì)生活的各個(gè)領(lǐng)域。

人臉識(shí)別技術(shù)具有廣泛的應(yīng)用前景,可以應(yīng)用到多種不同的安全領(lǐng)域,因其識(shí)別特征的獨(dú)特性、惟一性和相對(duì)穩(wěn)定性,逐漸成為一非常熱門的研究課題。許多典型的人臉識(shí)別算法和應(yīng)用系統(tǒng)都是針對(duì)標(biāo)準(zhǔn)或特定的人臉數(shù)據(jù)庫,利用庫內(nèi)人臉進(jìn)行訓(xùn)練,并在相同的庫中實(shí)現(xiàn)人臉識(shí)別。但在軟件保護(hù)、計(jì)算機(jī)安全等特殊應(yīng)用中,身份認(rèn)證僅針對(duì)單個(gè)對(duì)象進(jìn)行人臉識(shí)別,現(xiàn)有的人臉識(shí)別方法并不能勝任這樣的識(shí)別任務(wù)。為此,本文針對(duì)單對(duì)象人臉識(shí)別的特點(diǎn),討論了單對(duì)象人臉檢測(cè)和識(shí)別的關(guān)鍵技術(shù),在此基礎(chǔ)上提出了一種單對(duì)象人臉識(shí)別算法,實(shí)驗(yàn)結(jié)果證明了該方法的有效性。

2 單對(duì)象人臉識(shí)別的特點(diǎn)

與典型的人臉識(shí)別相比,單對(duì)象人臉識(shí)別有以下4個(gè)方面的特點(diǎn):

應(yīng)用領(lǐng)域 人臉識(shí)別的應(yīng)用領(lǐng)域很廣,如刑偵破案、證件核對(duì)、保安監(jiān)控等,而單對(duì)象人臉識(shí)別主要應(yīng)用在軟件保護(hù)、計(jì)算機(jī)安全鎖、特定對(duì)象追蹤等領(lǐng)域。

識(shí)別系統(tǒng)的目標(biāo) 單對(duì)象人臉識(shí)別的最終目標(biāo)是系統(tǒng)必須具有高度的安全性和可靠性,即識(shí)別錯(cuò)誤率趨于0。雖然降低識(shí)別錯(cuò)誤率的同時(shí)識(shí)別率也會(huì)降低,但可以通過提示用戶調(diào)整姿態(tài)(如注視攝像頭等)加以改善。

膚色模型 由于單對(duì)象人臉識(shí)別僅針對(duì)特定的對(duì)象,所以人臉檢測(cè)的膚色模型可采用自適應(yīng)的方法調(diào)整膚色范圍。

分類方法 單對(duì)象人臉識(shí)別不存在人臉數(shù)據(jù)庫,常用的最小距離分類法不能夠正確識(shí)別特定的對(duì)象,只能用閾值作為判據(jù)。因此,閾值的選取十分重要,閾值過大則容易出現(xiàn)錯(cuò)判,存在安全隱患;而閾值過小又會(huì)影響識(shí)別效率。

3 人臉的檢測(cè)和歸一化

人臉檢測(cè)是人臉識(shí)別的前提。對(duì)于給定的圖像,人臉檢測(cè)的目的在于判斷圖像中是否存在人臉,如果存在,則返回其位置和空間分布。利用人臉膚色和面部特征,將人臉檢測(cè)分為兩個(gè)階段:外臉檢測(cè)和內(nèi)臉定位。外臉檢測(cè)主要利用人臉膚色進(jìn)行初步的臉區(qū)檢測(cè),分割出膚色區(qū)域;內(nèi)臉檢測(cè)是在外臉區(qū)域中利用面部幾何特征進(jìn)行驗(yàn)證和定位。

3.1 外臉檢測(cè)

外臉檢測(cè)的任務(wù)是將待檢圖像中可能的人臉區(qū)域找出來并加以標(biāo)記,其步驟如下:

(1)根據(jù)人類膚色在色彩空間中存在區(qū)域性的特點(diǎn),將可能為人臉的像素檢測(cè)出來。為更好地利用膚色特征,同時(shí)選用HSI和YcbCr兩種色彩空間對(duì)圖像進(jìn)行二值化處理,膚色范圍限定在H∈[0,46],S∈[0.10,0.72],Cb∈[98,130],Cr∈[128,170]內(nèi)。將滿足條件的像素標(biāo)記為膚色像素,其余的均為非膚色像素。

(2)去噪處理。在以每一個(gè)膚色點(diǎn)為中心的5×5鄰域內(nèi)統(tǒng)計(jì)膚色像素的個(gè)數(shù),超過半數(shù)時(shí)中心點(diǎn)保留為膚色,否則認(rèn)為是非膚色。

(3)將二值圖像中的膚色塊作區(qū)域歸并,并對(duì)目標(biāo)區(qū)域進(jìn)行比例、結(jié)構(gòu)分析,過濾掉不可能的人臉區(qū)域。目標(biāo)區(qū)域的高度/寬度比例限定在0.8~2.0。

3.2 內(nèi)臉檢測(cè)和定位

將包含眼、眉、鼻和嘴的區(qū)域稱為內(nèi)臉區(qū)域。內(nèi)臉區(qū)域能夠很好地表達(dá)人臉特征,且不易受背景、頭發(fā)等因素的干擾,因此內(nèi)臉區(qū)域的檢測(cè)和定位對(duì)后續(xù)的特征提取和識(shí)別至關(guān)重要。

在外臉區(qū)域的上半部,對(duì)二值圖像進(jìn)行水平方向和垂直方向的投影,確定兩個(gè)包含黑點(diǎn)的矩形區(qū)域作為雙眼的大致區(qū)域。在確定的兩個(gè)區(qū)域中,對(duì)黑點(diǎn)進(jìn)行區(qū)域膨脹,可以得到眼睛的基本輪廓和左石眼角,黑點(diǎn)坐標(biāo)的平均值作為瞳孔的位置。

設(shè)左右瞳孔的坐標(biāo)分別為(Lx,Ly)和(Rx,Ry),兩個(gè)瞳孔之間的距離為d,根據(jù)人臉的幾何特征,我們將內(nèi)臉區(qū)域定義為:寬度=-d×1.6,高度=-d×1.8,左上角坐標(biāo)為(Lx-d×0.3,(Ly+Ry)/2-(-d)× 0.3)。實(shí)驗(yàn)表明,該區(qū)域能夠很好地表達(dá)人臉特征。

3.3 內(nèi)臉區(qū)域的歸一化

由于各待測(cè)圖像中的人臉大小具有很大的隨機(jī)性,因此,有必要對(duì)內(nèi)臉區(qū)域進(jìn)行歸一化操作。人臉歸一化是指對(duì)內(nèi)臉區(qū)域的圖像進(jìn)行縮放變換,得到統(tǒng)一大小的標(biāo)準(zhǔn)圖像,實(shí)驗(yàn)中,我們規(guī)定標(biāo)準(zhǔn)圖像的大小為128×128。歸一化處理,保證了人臉大小的一致性,體現(xiàn)了人臉在圖像平面內(nèi)的尺寸不變性。

圖1是一個(gè)人臉檢測(cè)和歸一化的例子,其中的原始圖像來自實(shí)驗(yàn)室現(xiàn)場(chǎng)拍攝。

 


4 人臉特征提取及DWT-DCT平均臉

對(duì)歸一化的人臉圖像,采用小波變換與DCT相結(jié)合的方法提取人臉特征。首先對(duì)人臉圖像進(jìn)行3層小波分解,取低頻子圖像LL3作為人臉特征提取的對(duì)象,從而獲得每幅訓(xùn)練樣本或測(cè)試樣本的低頻子圖像;然后對(duì)低頻子圖像進(jìn)行離散余弦變換(DCT),DCT系數(shù)個(gè)數(shù)與子圖像的大小相等(即256),由于圖像DCT變換,能量集中在低頻部分,因此只取其中的136個(gè)低頻系數(shù)作為特征向量。

為了使測(cè)試樣本與訓(xùn)練樣本具有可比性,提取全部訓(xùn)練樣本的特征向量,計(jì)算所有訓(xùn)練樣本的平均特征,構(gòu)成DWT-DCT平均臉,即:

 


其中N為訓(xùn)練樣本數(shù),xk,i表示第i個(gè)樣本的第k個(gè)特征向量,mk為平均臉的第k個(gè)特征向量,k=1,2,…,136。

5 人臉的識(shí)別

完成訓(xùn)練過程并獲得待測(cè)樣本的特征后,即可進(jìn)行人臉識(shí)別,本文采用歐氏距離進(jìn)行分類。

5.1 計(jì)算樣本與平均臉的歐氏距離

用m和x表示平均臉和樣本的特征向量,則樣本與平均臉的歐氏距離為:

 


其中mk表示平均臉的第k個(gè)特征向量,xk表示待測(cè)樣本的第k個(gè)特征向量。身份認(rèn)證時(shí),計(jì)算待測(cè)樣本與平均臉的歐氏距離,并與特定對(duì)象的自適應(yīng)閾值進(jìn)行比較,將小于閾值的樣本判為該對(duì)象的人臉,即認(rèn)證通過。

5.2 自適應(yīng)閾值的選取

與典型的人臉識(shí)別方法不同,單對(duì)象人臉認(rèn)識(shí)沒有人臉數(shù)據(jù)庫,不能用距離最小作為判據(jù),只能用閾值作為判別依據(jù)。閾值的選取應(yīng)兼顧識(shí)別率和識(shí)別的準(zhǔn)確性,實(shí)驗(yàn)中我們?nèi)∮?xùn)練樣本與平均臉的歐氏距離平均值作為分類閾值,即:

 


其中,N為訓(xùn)練樣本數(shù),此值不宜太??;di為第i個(gè)樣本與平均臉之間的歐氏距離。

6 實(shí)驗(yàn)結(jié)果及分析

本文選用西安交通大學(xué)人工智能與機(jī)器人研究所東方人臉庫(AI&R)的視點(diǎn)子庫進(jìn)行實(shí)驗(yàn),該數(shù)據(jù)庫包括每位被拍攝人在19個(gè)不同視點(diǎn)角度下(10°為一個(gè)單位)拍攝的中性表情圖像。實(shí)驗(yàn)包括類內(nèi)測(cè)試和類間測(cè)試。類內(nèi)測(cè)試用于考查單對(duì)象人臉識(shí)別的識(shí)別率,而類間測(cè)試則用于考查誤識(shí)率。隨機(jī)選取5個(gè)人,每人用7幅圖像(-30°~+30°)作為訓(xùn)練樣本,分別計(jì)算平均臉和自適應(yīng)閾值、類內(nèi)識(shí)別率和類內(nèi)距離,另外再選取50個(gè)人,每人一幅正面圖像作為類間測(cè)試樣本,分別對(duì)5個(gè)對(duì)象進(jìn)行類間測(cè)試,實(shí)驗(yàn)結(jié)果如表1所示。從實(shí)驗(yàn)數(shù)據(jù)可以得出如下結(jié)果:

(1)類內(nèi)識(shí)別率不高,原因是自適應(yīng)閾值為訓(xùn)練樣本與平均臉的歐氏距離平均值,訓(xùn)練樣本中的部分圖像不能被識(shí)別。在實(shí)驗(yàn)室中,我們通過提示被試注視攝像頭、適當(dāng)調(diào)整姿態(tài)等措施提高圖像的拍攝質(zhì)量,使識(shí)別率得到了顯著的改善。

(2)在50人的類間測(cè)試中,最小距離均大于閾值,即錯(cuò)誤識(shí)別率為0。實(shí)驗(yàn)室的現(xiàn)場(chǎng)測(cè)試中也得到了相同的結(jié)果。

(3)文中提出的單對(duì)象人臉識(shí)別方法能夠成功地識(shí)別特定對(duì)象,并能準(zhǔn)確地排除其他對(duì)象,可用于軟件保護(hù)、計(jì)算機(jī)安全等系統(tǒng)的身份驗(yàn)證。

 


7 結(jié) 語

本文提出的單對(duì)象人臉識(shí)別方法,針對(duì)單對(duì)象人臉識(shí)別的特點(diǎn),綜合考慮了識(shí)別率和認(rèn)證的準(zhǔn)確性,運(yùn)用平均臉方法有效地縮小類內(nèi)距離,同時(shí)擴(kuò)大類間距離,取訓(xùn)練樣本與平均臉的歐氏距離平均值作為分類閾值。實(shí)驗(yàn)結(jié)果表明,該方法具有識(shí)別有效性和認(rèn)證可靠性,在單對(duì)象人臉識(shí)別的實(shí)際應(yīng)用中是一種可行的方法。


本站聲明: 本文章由作者或相關(guān)機(jī)構(gòu)授權(quán)發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點(diǎn),本站亦不保證或承諾內(nèi)容真實(shí)性等。需要轉(zhuǎn)載請(qǐng)聯(lián)系該專欄作者,如若文章內(nèi)容侵犯您的權(quán)益,請(qǐng)及時(shí)聯(lián)系本站刪除。
換一批
延伸閱讀

9月2日消息,不造車的華為或?qū)⒋呱龈蟮莫?dú)角獸公司,隨著阿維塔和賽力斯的入局,華為引望愈發(fā)顯得引人矚目。

關(guān)鍵字: 阿維塔 塞力斯 華為

倫敦2024年8月29日 /美通社/ -- 英國汽車技術(shù)公司SODA.Auto推出其旗艦產(chǎn)品SODA V,這是全球首款涵蓋汽車工程師從創(chuàng)意到認(rèn)證的所有需求的工具,可用于創(chuàng)建軟件定義汽車。 SODA V工具的開發(fā)耗時(shí)1.5...

關(guān)鍵字: 汽車 人工智能 智能驅(qū)動(dòng) BSP

北京2024年8月28日 /美通社/ -- 越來越多用戶希望企業(yè)業(yè)務(wù)能7×24不間斷運(yùn)行,同時(shí)企業(yè)卻面臨越來越多業(yè)務(wù)中斷的風(fēng)險(xiǎn),如企業(yè)系統(tǒng)復(fù)雜性的增加,頻繁的功能更新和發(fā)布等。如何確保業(yè)務(wù)連續(xù)性,提升韌性,成...

關(guān)鍵字: 亞馬遜 解密 控制平面 BSP

8月30日消息,據(jù)媒體報(bào)道,騰訊和網(wǎng)易近期正在縮減他們對(duì)日本游戲市場(chǎng)的投資。

關(guān)鍵字: 騰訊 編碼器 CPU

8月28日消息,今天上午,2024中國國際大數(shù)據(jù)產(chǎn)業(yè)博覽會(huì)開幕式在貴陽舉行,華為董事、質(zhì)量流程IT總裁陶景文發(fā)表了演講。

關(guān)鍵字: 華為 12nm EDA 半導(dǎo)體

8月28日消息,在2024中國國際大數(shù)據(jù)產(chǎn)業(yè)博覽會(huì)上,華為常務(wù)董事、華為云CEO張平安發(fā)表演講稱,數(shù)字世界的話語權(quán)最終是由生態(tài)的繁榮決定的。

關(guān)鍵字: 華為 12nm 手機(jī) 衛(wèi)星通信

要點(diǎn): 有效應(yīng)對(duì)環(huán)境變化,經(jīng)營業(yè)績穩(wěn)中有升 落實(shí)提質(zhì)增效舉措,毛利潤率延續(xù)升勢(shì) 戰(zhàn)略布局成效顯著,戰(zhàn)新業(yè)務(wù)引領(lǐng)增長 以科技創(chuàng)新為引領(lǐng),提升企業(yè)核心競爭力 堅(jiān)持高質(zhì)量發(fā)展策略,塑強(qiáng)核心競爭優(yōu)勢(shì)...

關(guān)鍵字: 通信 BSP 電信運(yùn)營商 數(shù)字經(jīng)濟(jì)

北京2024年8月27日 /美通社/ -- 8月21日,由中央廣播電視總臺(tái)與中國電影電視技術(shù)學(xué)會(huì)聯(lián)合牽頭組建的NVI技術(shù)創(chuàng)新聯(lián)盟在BIRTV2024超高清全產(chǎn)業(yè)鏈發(fā)展研討會(huì)上宣布正式成立。 活動(dòng)現(xiàn)場(chǎng) NVI技術(shù)創(chuàng)新聯(lián)...

關(guān)鍵字: VI 傳輸協(xié)議 音頻 BSP

北京2024年8月27日 /美通社/ -- 在8月23日舉辦的2024年長三角生態(tài)綠色一體化發(fā)展示范區(qū)聯(lián)合招商會(huì)上,軟通動(dòng)力信息技術(shù)(集團(tuán))股份有限公司(以下簡稱"軟通動(dòng)力")與長三角投資(上海)有限...

關(guān)鍵字: BSP 信息技術(shù)
關(guān)閉
關(guān)閉