一種準(zhǔn)諧振反激式控制器介紹
1 前言
電源適配器(Power adapter)是小型便攜式電子設(shè)備及電子電器的供電電源變換設(shè)備,按其輸出類(lèi)型可分為交流輸出型和直流輸出型;按連接方式可分為插墻式和桌面式。廣泛配套于電話(huà)子母機(jī)、游戲機(jī)、語(yǔ)言復(fù)讀機(jī)、隨身聽(tīng)、筆記本電腦、蜂窩電話(huà)等設(shè)備中。
表1顯示了針對(duì)外部電源適配器的最新的EPA 2.0 Level V標(biāo)準(zhǔn)。該表重點(diǎn)介紹了平均能效和空載功耗以及輕載功耗。
表1針對(duì)外部電源適配器的EPA 2.0 Level V標(biāo)準(zhǔn)
為此,英飛凌針對(duì)綠色電源適配器解決方案開(kāi)發(fā)出全新具備數(shù)字降頻、主動(dòng)突發(fā)模式和折返校正等特性QR PWM IC ICE2QS03G。
2 CCM DCM與QR工作模式對(duì)照
反激式轉(zhuǎn)換器廣泛應(yīng)用于交流/直流電源,尤其適用于輸出功率低于150W的電源。單開(kāi)關(guān)反激式轉(zhuǎn)換器具備三種基本工作模式:連續(xù)導(dǎo)通模式(CCM)、斷續(xù)導(dǎo)通模式(DCM)和準(zhǔn)諧振(QR)模式。這三種工作模式都具備各自的優(yōu)缺點(diǎn)。
2.1 連續(xù)導(dǎo)通模式
圖1a是典型的CCM工作波形。 轉(zhuǎn)換器的輸入功率是:
(1)
由于電感器存儲(chǔ)的電能不完全轉(zhuǎn)移到二次側(cè),因此在相同條件下,CCM工作模式所需的電感通常高于DCM工作模式所需的電感。此外,更高的電感意味著主側(cè)開(kāi)關(guān)電流具備較低的交流/直流轉(zhuǎn)換率,因此獲得更低的導(dǎo)通損耗。不過(guò),隨著原邊電感值的升高,變壓器的磁損耗也會(huì)增大,因此在開(kāi)關(guān)導(dǎo)通損耗和變壓器導(dǎo)通損耗之間需折衷考慮。
此外,在占空比大于0.5的條件下,為避免次諧波振蕩,需要加入斜率補(bǔ)償功能。由于高壓輸入下,導(dǎo)通時(shí)間較短,高壓下的補(bǔ)償值低于低壓下的補(bǔ)償值。這將使高壓下的最大輸出功率遠(yuǎn)遠(yuǎn)高于低壓下的最大輸出功率。實(shí)際上,采用CCM工作模式的SMPS IC針對(duì)某個(gè)具體的設(shè)計(jì)只具備一條補(bǔ)償曲線(xiàn)。如果設(shè)計(jì)發(fā)生變化,最大功率限制性能也會(huì)隨之變化。
2.2 斷續(xù)導(dǎo)通模式
圖1b是采用D CM工作模式的反激式轉(zhuǎn)換器的典型工作波形。 該轉(zhuǎn)換器的輸入功率是:
(2)
如上所述,在MOSFET導(dǎo)通期間電感存儲(chǔ)的電能在MOSFET關(guān)斷期間完全轉(zhuǎn)移至次側(cè)。最大功率只與電感、開(kāi)關(guān)頻率和峰值電流有關(guān)。對(duì)于采用固定頻率的設(shè)計(jì),在不同輸入電壓條件下,很容易通過(guò)使最大峰值電流保持不變來(lái)限制系統(tǒng)的最大輸入功率。
2.3 自由運(yùn)行準(zhǔn)諧振模式
圖1c是 在QR工作模式下的典型工作波形。該轉(zhuǎn)換器的輸入功率是:
(3)
在變壓器二次側(cè)電流為零時(shí),原邊主電感和漏源及線(xiàn)路的寄生電容發(fā)生諧振,功率開(kāi)關(guān)只在漏源電壓的最低點(diǎn)開(kāi)通。在這種條件下,開(kāi)關(guān)頻率由輸出負(fù)載和輸入電壓決定。如果峰值電流限制保持不變,在高輸入電壓條件下,開(kāi)關(guān)頻率將大幅提高。這將導(dǎo)致在高壓下很高的最大輸入功率。
圖1反激式轉(zhuǎn)換器在不同工作模式下的典型工作波型
3 ICE2QS03G 特性
由于導(dǎo)通電壓更低,未加限頻的QR工作模式雖然具備較低的開(kāi)通損耗。但是,在輕載條件下,開(kāi)關(guān)頻率很高,效率下降的很快。因此,在這些條件下,需要限制開(kāi)關(guān)頻率。英飛凌的數(shù)字降頻(獲得專(zhuān)利)概念由此被開(kāi)發(fā)出來(lái)。
3.1 數(shù)字降頻概念
對(duì)于QR工作模式而言,開(kāi)關(guān)周期包括三個(gè)部分:導(dǎo)通時(shí)間(Ton)、關(guān)斷時(shí)間(Toff)和半諧振周期(Tres)。根據(jù)變壓器主側(cè)電感器的伏特-秒平衡,Ton和Toff 可利用(4) 和 (5)等式計(jì)算,諧振周期利用(6)等式計(jì)算。在(6)等式中,Cds 為MOSFET的漏-源極等效電容。
(4)
(5)
(6)
這就解釋了為什么當(dāng)負(fù)載減小或輸入電壓升高的情況下,開(kāi)關(guān)頻率會(huì)提高。這是開(kāi)關(guān)電源所不希望見(jiàn)到的,因?yàn)楦唛_(kāi)關(guān)頻率會(huì)導(dǎo)致高開(kāi)關(guān)損耗。為了限制開(kāi)關(guān)頻率,英飛凌開(kāi)發(fā)出數(shù)字降頻方法,確保不在第一個(gè)諧振谷點(diǎn),而是在第二個(gè)、第三個(gè)、甚至在第七個(gè)谷點(diǎn)進(jìn)行操作——這主要取決于負(fù)載條件。
事實(shí)上,ICE2QS03G的內(nèi)部有一個(gè)寄存器,稱(chēng)為ZC計(jì)數(shù)器。該計(jì)數(shù)器可決定在哪個(gè)谷點(diǎn)打開(kāi)MOSFET。通過(guò)監(jiān)控反饋電壓可調(diào)節(jié)寄存器的值。當(dāng)負(fù)載電流變小時(shí),可通過(guò)控制回路降低反饋電壓,從而提高ZC計(jì)數(shù)器值,降低開(kāi)關(guān)頻率。當(dāng)負(fù)載電流增大時(shí),ZC計(jì)數(shù)器值將變小。表3詳細(xì)介紹了ZC計(jì)數(shù)器的變化的工作原理,圖2通過(guò)三個(gè)例子,說(shuō)明ZC計(jì)數(shù)器如何隨著反饋電壓變化而變化。
由于采用可變ZC計(jì)數(shù)器和谷底開(kāi)通,當(dāng)輸出負(fù)載降低時(shí),轉(zhuǎn)換器的實(shí)際開(kāi)關(guān)頻率會(huì)下降,如圖3所示。
表3 ZC調(diào)節(jié)方法
圖 2 數(shù)字降頻
圖注:Clock: 時(shí)鐘;Up/Down counter: 上/下計(jì)數(shù)器; case1: 例1;Case 2 : 例2;Case 3: 例3
圖 3 基本QR與英飛凌QR的開(kāi)關(guān)頻率對(duì)照
圖注:Switching frequency: 開(kāi)關(guān)頻率;Active burst mode: 主動(dòng)突發(fā)模式;Free-running QR: 自由運(yùn)行QR;Output power: 輸出功率3.2 主動(dòng)突發(fā)模式(已獲專(zhuān)利)
在輕載條件下,主要損耗是開(kāi)關(guān)損耗和變壓器磁損耗。兩者都與開(kāi)關(guān)頻率有關(guān)。突發(fā)模式和跳周期模式是廣泛采用的兩種方法。通過(guò)采用突發(fā)模式和跳周期模式降低輕載開(kāi)關(guān)頻率,可大幅提高能效。
圖4為主動(dòng)突發(fā)模式的運(yùn)行情況。要想進(jìn)入突發(fā)模式,必須滿(mǎn)足三個(gè)條件。第一,反饋電壓必須低于預(yù)設(shè)的閾值VFBEB——設(shè)置進(jìn)入突發(fā)模式的功率。第二,ZC上/下計(jì)數(shù)器的值必須等于7,確保轉(zhuǎn)換器處于輕載條件。最后,屏蔽時(shí)間應(yīng)為24毫秒,避免由于一些可能出現(xiàn)的瞬變引起的干擾。
若要退出突發(fā)模式,反饋電壓應(yīng)高于預(yù)設(shè)的閾值VFBLB。在主動(dòng)突發(fā)模式運(yùn)行過(guò)程中,當(dāng)反饋電壓高于V FBBOn時(shí),IC將啟動(dòng)開(kāi)關(guān)操作。當(dāng)反饋電壓低于VFBBOff時(shí),IC將停止開(kāi)關(guān)操作。
VFBBoff 為3.0V,VFBBOn 為3.6V。該電壓閾值遠(yuǎn)高于傳統(tǒng)突發(fā)模式的閾值,可節(jié)省IC和反饋回路光電耦合器的能耗。由于其具備較高的電壓電平,因此具備出色的抗噪性能。相對(duì)于突發(fā)模式,這種運(yùn)行更加穩(wěn)定,從而實(shí)現(xiàn)更高的能效。
圖4 主動(dòng)突發(fā)模式運(yùn)行:Enter bu rst: 進(jìn)入突發(fā)模式;Burst On: 突發(fā)模式打開(kāi);Burst off: 突發(fā)模式關(guān)閉;Leave Burst: 退出突發(fā)模式,Current limit level during burst mode: 在突發(fā)模式運(yùn)行過(guò)程中的電流限值水平
3.3 最大功率限制(帶折返校正功能)
Pin 與 Ipk 和 fsw成比例, 而Ipk 受電流采樣限值Vcs的限制。根據(jù)(4)等式,我們可以看到fsw 與Vin成比例。當(dāng)線(xiàn)路電壓升高時(shí),轉(zhuǎn)換器輸入功率會(huì)變得很大。當(dāng)線(xiàn)路電壓升高時(shí),需要限制電流采樣水平,從而限制最大輸入功率。對(duì)于ICE2QS03G而言,可通過(guò)ZC管腳輸出的電流獲得輸入電壓信息。這是因?yàn)?,輔助繞組可感應(yīng)與輸入電壓成比例的負(fù)電壓。由于ZC管腳在內(nèi)部被鉗位到-0.3V,因此ZC管腳的輸出電流與輸入電壓成比例,如等式(12)所示。通過(guò)調(diào)節(jié)Vcs值,可有效限制最大輸入功率。圖5為檢測(cè)電路。該IC采用了數(shù)字比較電路。圖6為最大Vcs限值VS輸入電壓(與Izc成正比)。
(12)
圖 5折返校正檢測(cè)
圖注:Foldback point correction block: 折返校正塊;Current limitation: 電流限制
圖 6 Vcsmax VS 輸入線(xiàn)路電壓
3.4 損耗計(jì)算
表4為65W適配器在115V和 230V(交流)條件下的各種損耗分布情況
表 4 損耗分布
圖注:Loss distribution: 損耗分布;Power: 功率; Loss name: 損耗名稱(chēng)
4 結(jié)論
本文對(duì)反激式轉(zhuǎn)換器的結(jié)論是,無(wú)論在滿(mǎn)負(fù)載、中等負(fù)載和輕負(fù)載條件下,具備數(shù)字降頻特性的QR工作模式都可獲得極高的能效。利用主動(dòng)突發(fā)模式特性,可將在265V(交流)輸入電壓條件下的待機(jī)功耗限制在100mW以下。這使設(shè)計(jì)可輕而易舉地滿(mǎn)足相關(guān)標(biāo)準(zhǔn)要求,例如EPA2.0 Level V標(biāo)準(zhǔn)。