低電壓差分信號傳輸(LVDS)已經在眾多應用中得到驗證,LVDS在傳送高數(shù)據率信號的同時還具有其它優(yōu)勢: 與低電源電壓的兼容性;低功耗;低輻射;高抗干擾性;簡單的布線和終端匹配。
LVDS為差分模式(圖1),這種模式固有的共模抑制能力提供了高水平的抗干擾性,由于具有較高的信噪比,信號幅度可以降低到大約100mV (圖2),允許非常高的傳輸速率。較低的信號擺幅還有助于降低功耗。與上述優(yōu)勢相比,LVDS的缺陷(每一通道需要兩根連線傳輸信號)已經顯得微不足道。
圖1. 基本的LVDS發(fā)送接收結構
圖2. LVDS的信號強度和幅度
隨著汽車內部整合的安全和輔助電子設備的增加,汽車領域對高速互連的需求急劇增長,主要集中在用于駕駛支持(電子后視鏡、導航系統(tǒng)、泊車距離控制、超視距顯示、仰視顯示)的視頻顯示系統(tǒng),車載娛樂系統(tǒng)(電視和DVD播放器) 等,這些應用要求高速數(shù)據傳輸,以滿足圖像傳遞的要求。正是這些需求的增長,帶動LVDS產品在這些領域嶄露頭角(圖3)。
圖3. 汽車應用的典型LVDS連接
LVDS非常適合汽車應用。汽車內部存在眾多的電磁輻射源,因此,抗干擾能力是汽車電子設計最基本的要求。另外,考慮到LVDS傳輸線自身的低輻射優(yōu)勢,對系統(tǒng)的其它設施幾乎不產生額外干擾。LVDS傳輸只需要簡單的電阻連接,簡化了電路布局,線路連接也非常簡單(采用雙絞銅質電纜)。LVDS兼容于各種總線拓撲: 點到點拓撲(一個發(fā)送器,一個接收器); 多分支拓撲(一個發(fā)送器,多個接收器); 多點拓撲(多個發(fā)送器,多個接收器)
汽車設計中存在一個關鍵問題,即車體不同位置的地電位有很大差異,電位差可能達到幾伏特。直流耦合接口配置下,這樣的電位差會很快中斷數(shù)據傳輸。這個問題可以通過電容耦合傳輸信號解決,前提是信號傳輸中不會對電容在同一個方向長時間充電。
而實際應用無法排除這種同一方向長時間充電的可能性,比如,在傳輸長串的連續(xù)1信號時。MAX9213/9214 (圖4)利用“直流平衡”技術避免了上述問題,這類器件監(jiān)控它的傳輸數(shù)據,當顯示有過長的連續(xù)1或0信號時,芯片會在發(fā)送數(shù)據前將數(shù)據翻轉,接收器可以很容易地通過翻轉信號重建原始信號。這些操作消除了長串連續(xù)1或連續(xù)0信號,降低電容充電的影響,從而有效解決地電位偏差問題。
圖4. 兩芯片傳輸方案,結合了收發(fā)功能和串行-解串功能
從圖3可以看出另外一個潛在問題:眾多的系統(tǒng)互連意味著大量的電纜連線,而在原有的汽車設計中電纜(線束)連接已經非常擁擠,為了解決這一問題,需要區(qū)分不同數(shù)據傳輸?shù)囊?,并非所有連接都要求特別高的速率,Maxim推出的MAX9217/9218可以通過一對兒雙絞線提供高達700Mbps數(shù)據速率()。以這個容量可以毫不費力地連接480 x 800分辨率的顯示器。
圖5. 交流耦合串行器和解串器的功能框圖
為了進一步優(yōu)化電磁輻射特性,Maxim的芯片還將并行數(shù)據顯示過程中的所有切換操作都同步到時鐘頻率上,這個頻率可以在3MHz到35MHz范圍調節(jié)(對于一個既定應用,采用所允許的最低時鐘頻率以最小化電磁輻射)。另外,通過降低數(shù)據流本身引起的開關量,包括特殊的編碼和串行輸出的共模濾波,也有助于改善電磁兼容性。光纖接口也可以改善EMI,但這種方案存在其它問題,而且價格昂貴。
LVDS器件必須具有較高的ESD保護,特別是輸入、輸出引腳,這也是汽車工業(yè)非常普遍的要求。這些引腳必需能夠承受IEC 61000-4-2規(guī)定的±15kV氣隙放電、±8kV接觸放電,或者是ISO 10605規(guī)定的±25kV氣隙放電、±8kV接觸防電。
綜上所述,無論是現(xiàn)在還是將來,LVDS接口都是汽車應用中連接板級系統(tǒng)的極好選擇。 為了達到這一目標,Maxim基于第一代LVDS產品的測試以及應用中取得的經驗,開發(fā)出了日益完善的芯片,在近幾年內,這些芯片必將成為汽車總線系統(tǒng)設計中LVDS連接方案的主導產品。