當前位置:首頁 > 汽車電子 > 汽車電子
[導讀]制動能量回收問題對于提高EV的能量利用率具有重要意義。電動汽車采用電制動時,驅動電機運行在發(fā)電狀態(tài),將汽車的部分動能回饋給蓄電池以對其充電,對延長電動汽車的行駛距離是至關重要的。國外有關研究表明,在存在較頻

制動能量回收問題對于提高EV的能量利用率具有重要意義。電動汽車采用電制動時,驅動電機運行在發(fā)電狀態(tài),將汽車的部分動能回饋給蓄電池以對其充電,對延長電動汽車的行駛距離是至關重要的。國外有關研究表明,在存在較頻繁的制動與起動的城市工況運行條件下,有效地回收制動能量,可使電動汽車的行駛距離延長百分之十到百分之三十。

  目前國內關于制動能量回收的研究還處在初級階段。制動能量回收要綜合考慮汽車動力學特性、電機發(fā)電特性、電池安全保證與充電特性等多方面的問題。研制一種既具有實際效用、又符合司機操作習慣的系統(tǒng)是有一定難度的。本文對上述問題作了一些積極的探索,并得出了一些有益的結論。

  1 制動模式

  電動汽車制動可分為以下三種模式,對不同情況應采用不同的控制策略。

  1.1 急剎車

  急剎車對應于制動加速度大于2m/s2的過程。出于安全性方面的考慮,急剎車應以機械為主,電剎車同時作用。在急剎車時,可根據初始速度的不同,由車上ABS控制提供相應的機械制動力。

  1.2 中輕度剎車

  中輕度剎車對應于汽車在正常工況下的制動過程,可分為減速過程與停止過程。電剎車負責減速過程,停止過程由機械剎車完成。兩種剎車的切換點由電機發(fā)電特性確定。

  1.3 汽車長下坡時的剎車

  汽車長下坡一般發(fā)生在盤山公路下緩坡時。在制動力要求不大時,可完全由電剎車提供。其充電特點表現為回饋電流較小但充電時間較長。限制因素主要為電池的最大可充電時間。

  由于電動汽車主要工作在城市工況下,所以本文將研究重點放在中輕度電剎車上。

  2 制動能量回收的約束條件

  實用的能量回收系統(tǒng)應滿足以下要求:

  (1)滿足剎車的安全要求,符合駕駛員的剎車習慣。

  剎車過程中,對安全的要求是第一位的。需要找到電剎車和機械剎車的最佳覆蓋區(qū)間,在確保安全的前提下,盡可能多地回收能量。具有能量回收系統(tǒng)的電動汽車的剎車過程應盡可能地與傳統(tǒng)的剎車過程近似,這將保證在實際應用中,系統(tǒng)有吸引力,可以為大眾所接受。

  (2)考慮驅動電機的發(fā)電工作特性和輸出能力。

  電動汽車中常用的是永磁直流電機或感應異步電機,應針對不同的電機的發(fā)電效率特性,采取相應的控制手段。

  (3)確保電池組在充電過程中的安全,防止過充。

  電動汽車中常用的電池為鎳氫電池、鋰電池和鉛酸電池。充電時,避免因充電電流過大或充電時間過長而損害電池。

  由以上分析可得能量回收的約束條件:

  (1)根據電池放電深度的不同,電池可接受的最大充電電流。

  (2)電池可接受的最大充電時間。

  (3)能量回收停止時電機的轉速及與此相對應的充電電流值。

  本項目原型車為XL型純電動車,驅動采用異步交流電機,額定功率為20kW,峰值功率為60kW,額定轉矩為53Nm,峰值轉矩為290Nm,持續(xù)輸出三倍額定轉矩時間不小于30s,額定轉速為3600r/min,最高轉速為9000r/min。蓄電池采用24節(jié)100Ah鎳氫電池,其瞬時充電電流可達1.5C(C為電池放電倍率),即150A。在充電電流為0.5C時,可持續(xù)安全充電。實驗表明,在電機轉速為500r/min時,充電電流小于6A??稍O此點為電剎車與機械剎車的切換點。3 制動能量回收控制算法

 

  3.1制動過程分析

  經推導可得,一次剎車回收能量E=K1K2K3(ΔW-FfS)。

  特定剎車過程中,車體動能衰減ΔW為定值。特定車型的機械傳動效率K1和滾動摩擦力Ff基本上是固定的。對蓄電池來說,制動能量回收對應于短時間(不超過20s)、大電流(可達100A)充電,因此能量回收約束條件(2)可忽略,充電效率K3也可認為恒定。對于電機來說,在制動過程中,其發(fā)電效率K2隨轉速和轉矩的變化而變化。制動距離S取決于制動力的大小和制動時間的長短。

  由以上分析可知,如果電池狀態(tài)(包括放電深度、初始充電電流強度)允許,回收能量只與發(fā)電機發(fā)電效率和剎車距離有關。在滿足制動時間要求的前提下,通過調節(jié)電機制動轉矩可以控制電機轉速。

  3.2 控制算法

  控制策略可描述為:在滿足剎車要求的情況下(由中輕度剎車檔位決定),根據能量回收約束條件(1)和(3)的不同值,確定最優(yōu)制動力,使回收的能量達到最大,即電流對時間的積分達到最大。為了與平常的剎車習慣相符合,令制動力隨剎車時間呈線性增長,即Fj=Fo+Kt。問題轉換為尋找最優(yōu)的制動力初值Fo和制動力增長系數K。

  我國常用的轎車循環(huán)25工況[1]規(guī)定,汽車最高速度不超過60km/h,加速度變化范圍為-1.5m/s2~1.5m/s2。為了體現城市工況下汽車制動的典型性,同時保證安全性和平穩(wěn)性,考察如下制動過程:電制動初始速度為60km/h(對應電機轉速為4500r/min),電制動結束速度為5.4km/h(對應電機轉速為500r/min),要求加速度的絕對值小于2m/s2,速度曲線盡量平滑。中度檔位剎車時規(guī)定制動時間為8s~12s,輕度檔位剎車時規(guī)定制動時間為12s~18s。下面只討論中度檔位剎車情況,輕度檔位剎車情況與之類似。

  鎳氫電池(100Ah)在常溫以0.5C放電時,電池單體電壓變化范圍為12~15V,但電池主要工作于平臺段,即12.2~13V。為討論問題方便,認為電池單體端電壓為12.5V,總電壓等于300V。據此假設,計算所得的充電電流誤差不超過6%。

  電機在不同的轉速與轉矩運行時,實測的效率曲線類似指數函數。為了處理方便,可將效率曲線分三段線性擬合成如下函數(擬合誤差不超過5%,其中n為電機瞬時轉速):

  

 

  與此相對應,可將制動過程分成三個階段:

  第一階段:電機轉速變化范圍為4500r/min~3600r/min,電機發(fā)電效率為0.9,要求制動時間t1≤3s。

  取制動轉矩為60Nm,即F0=1860N,K=20,可得t1=2.62s,平均加速度約為-1.29m/s2。計算可知,充電電流I單調減小,IMax=It=0=75.75A。

  第二階段:電機轉速變化范圍為3600r/min~1500r/min,電機的發(fā)電效率變化范圍為0.9~0.82,要求制動時間t2≤5s。

  此時問題歸結為在約束條件下的最優(yōu)控制問題。經仿真計算可知,回收能量值隨F0、K的增加而單調增加,并且主要由F0決定。當F0較小時,K的變化對制動時間的影響較大。由于電機可運行在三倍過載(140Nm)的情況下,可得最大制動力為4300N。當F0=4300N、K=30時,回收能量取最大值,為274.3(單位:安秒/As),平均加速度為-2.83m/s2。為了滿足剎車平穩(wěn)性的要求,取F0=2300N、K=50。制動時間為4.71s,此時回收能量為262.8As,較最大值減少4.2%,而平均加速度為-1.68m/s2,僅為最大值的59.3%。此階段充電電流最大值為76.9A。為了準確描述能量回收的效果,引入了一個新的單位“安秒/As”(即時間以秒為單位對電流的積分)來衡量能量的大小。

  第三階段:電機轉速變化范圍為1500r/min~500r/min,電機的發(fā)電效率變化范圍為0.82~0.6,要求制動時間t3≤2s。

  仿照第二階段的分析方法可得,取F0=3000N、K=30時,制動時間為1.88s,回收能量為42.1As,平均加速度為-2.01m/s2。此時回收能量較最大值減少2.3%,而平均加速度為最大值的74.1%,此階段充電電流最大值為35.9A。

  4 仿真模型及結果

  根據汽車動力學理論[2]并結合其它相關方程可得仿真模型:

  驅動力合力:Ft=Ff+Fj+Fi+Fw

  其中,Ft為作用于車輪上的驅動力合力,Ff為滾動摩擦力,Fj為加速阻力,Fi為坡度阻力,Fw為空氣阻力。在城市工況下,Fi和Fw可忽略。

  

 

  其中,車體質量為M,瞬時車速為V,制動初始車速為V0,電制動結束時車速為V1,充電電流為I,電池端電壓為U。其它符號含義與前相同。

  在Simulink環(huán)境下建立仿真模型,可得電機轉速曲線如圖1所示,充電電流曲線如圖2所示,回收能量曲線如圖3所示。

  

 

  

 

  

5 制動能量回收控制算法功效的評價

 

  以初始速度為60km/h的電制動典型過程為例,經仿真計算可得,回收能量占車體總動能的65.4%,其余的34.6%為機械剎車和電剎車過程中的損耗。以我國轎車25循環(huán)工況為例,考慮到摩擦阻力及各部分效率的問題,回收能量占總耗能的23.3%。

  實驗證明,本文提出的制動能量回收控制策略是簡潔有效的。在典型城市工況下,配備能量回收系統(tǒng)的XL型純電動轎車運行可靠,可以延長續(xù)駛里程10%以上。

  6 其它相關問題的討論

  鋰電池由于比能量高,也是EV常用的動力源。實驗證明國內研制的鋰電池瞬時(20s)充電電流上限可達1C,對常用的80Ah鋰電池而言,其最大充電電流為80A左右。但是出于安全方面的考慮,如果把制動能量回收系統(tǒng)用于鋰電池系統(tǒng),需要嚴格的限流措施或將電剎車與機械剎車同時作用。

  制動能量回收的另一種情況是汽車下長緩坡。我國規(guī)定城市道路坡度不超過8%,在此條件下,如果EV下坡速度為30km/h(n=2200r/min,效率=0.847),則制動充電電流為37.6A,對鎳氫電池來說不到0.4C,可以安全地持續(xù)充電。

  盡管本課題針對純電動車,但由于混合動力車與純電動車的能量回收規(guī)律相似,因此以上討論同樣適用于各種混合動力車,主要區(qū)別在于電池放電倍率大小不同。

本站聲明: 本文章由作者或相關機構授權發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點,本站亦不保證或承諾內容真實性等。需要轉載請聯系該專欄作者,如若文章內容侵犯您的權益,請及時聯系本站刪除。
換一批
延伸閱讀

9月2日消息,不造車的華為或將催生出更大的獨角獸公司,隨著阿維塔和賽力斯的入局,華為引望愈發(fā)顯得引人矚目。

關鍵字: 阿維塔 塞力斯 華為

加利福尼亞州圣克拉拉縣2024年8月30日 /美通社/ -- 數字化轉型技術解決方案公司Trianz今天宣布,該公司與Amazon Web Services (AWS)簽訂了...

關鍵字: AWS AN BSP 數字化

倫敦2024年8月29日 /美通社/ -- 英國汽車技術公司SODA.Auto推出其旗艦產品SODA V,這是全球首款涵蓋汽車工程師從創(chuàng)意到認證的所有需求的工具,可用于創(chuàng)建軟件定義汽車。 SODA V工具的開發(fā)耗時1.5...

關鍵字: 汽車 人工智能 智能驅動 BSP

北京2024年8月28日 /美通社/ -- 越來越多用戶希望企業(yè)業(yè)務能7×24不間斷運行,同時企業(yè)卻面臨越來越多業(yè)務中斷的風險,如企業(yè)系統(tǒng)復雜性的增加,頻繁的功能更新和發(fā)布等。如何確保業(yè)務連續(xù)性,提升韌性,成...

關鍵字: 亞馬遜 解密 控制平面 BSP

8月30日消息,據媒體報道,騰訊和網易近期正在縮減他們對日本游戲市場的投資。

關鍵字: 騰訊 編碼器 CPU

8月28日消息,今天上午,2024中國國際大數據產業(yè)博覽會開幕式在貴陽舉行,華為董事、質量流程IT總裁陶景文發(fā)表了演講。

關鍵字: 華為 12nm EDA 半導體

8月28日消息,在2024中國國際大數據產業(yè)博覽會上,華為常務董事、華為云CEO張平安發(fā)表演講稱,數字世界的話語權最終是由生態(tài)的繁榮決定的。

關鍵字: 華為 12nm 手機 衛(wèi)星通信

要點: 有效應對環(huán)境變化,經營業(yè)績穩(wěn)中有升 落實提質增效舉措,毛利潤率延續(xù)升勢 戰(zhàn)略布局成效顯著,戰(zhàn)新業(yè)務引領增長 以科技創(chuàng)新為引領,提升企業(yè)核心競爭力 堅持高質量發(fā)展策略,塑強核心競爭優(yōu)勢...

關鍵字: 通信 BSP 電信運營商 數字經濟

北京2024年8月27日 /美通社/ -- 8月21日,由中央廣播電視總臺與中國電影電視技術學會聯合牽頭組建的NVI技術創(chuàng)新聯盟在BIRTV2024超高清全產業(yè)鏈發(fā)展研討會上宣布正式成立。 活動現場 NVI技術創(chuàng)新聯...

關鍵字: VI 傳輸協(xié)議 音頻 BSP

北京2024年8月27日 /美通社/ -- 在8月23日舉辦的2024年長三角生態(tài)綠色一體化發(fā)展示范區(qū)聯合招商會上,軟通動力信息技術(集團)股份有限公司(以下簡稱"軟通動力")與長三角投資(上海)有限...

關鍵字: BSP 信息技術
關閉
關閉