納米技術(shù)在微電子連接方面的應(yīng)用
本文示舉兩例,介紹納米技術(shù)在微電子連接方面的應(yīng)用。納米技術(shù)(nanotechnology)是一門(mén)在0.1~100nm空間尺度內(nèi)操縱原子和分子,對(duì)材料進(jìn)行加工,制造具有特定功能的產(chǎn)品,或?qū)δ澄镔|(zhì)進(jìn)行研究,掌握其原子和分子的運(yùn)動(dòng)規(guī)律和特性的嶄新高技術(shù)。
納米印刷技術(shù)
在半導(dǎo)體產(chǎn)業(yè)中,微細(xì)加工技術(shù)是實(shí)現(xiàn)器件的集成化和高性能化不可欠缺的技術(shù)。但是,在進(jìn)行微米尺度以下的加工時(shí),必須在清洗環(huán)境下排除振動(dòng),保持一定的加工環(huán)境溫度,抑制由熱膨脹引發(fā)的尺寸變化,因而會(huì)增加相當(dāng)大的成本。
近年來(lái),以美國(guó)為主,不少國(guó)家開(kāi)始使用微米連接印刷、毛細(xì)管微型模板、浸筆印板術(shù)等可以簡(jiǎn)單地形成納米結(jié)構(gòu)的新型制造技術(shù),這種新的加工技術(shù)被稱(chēng)為柔性印板術(shù)。其與微細(xì)加工技術(shù)的開(kāi)發(fā)點(diǎn)不同,其最大特征是簡(jiǎn)便且低成本。柔性印板術(shù)中的納米印刷技術(shù),其原理簡(jiǎn)單,而且已有成型設(shè)備在市場(chǎng)上銷(xiāo)售。
1 納米印刷技術(shù)
納米印刷技術(shù)的基本原理如圖1所示,就是把有納米級(jí)凹凸圖形的模板擠壓在涂覆了樹(shù)脂薄膜的基板上,再在樹(shù)脂薄膜的表面復(fù)制凹凸圖形。在普通的納米印刷技術(shù)中,能等倍復(fù)制模板,而在高寬比納米印刷技術(shù)中,則能形成高出納米模板凹部的結(jié)構(gòu)體。
圖1 納米印刷原理
在納米印刷工程中,首先用旋轉(zhuǎn)法等把樹(shù)脂薄膜涂覆在玻璃和硅制的基板上,再將樹(shù)脂薄膜加熱,使其復(fù)合在基板上。然后,在變軟的樹(shù)脂上擠壓納米模板,最后再把納米模板從樹(shù)脂薄膜上脫離開(kāi)去。通過(guò)以上過(guò)程,納米模板表面的圖形就被復(fù)制在樹(shù)脂薄膜的表面。
2 高寬比微細(xì)結(jié)構(gòu)的形成
在納米印刷技術(shù)中,將金屬凸模擠壓樹(shù)脂薄膜上,便會(huì)形成凹部。但要形成平面比較大的細(xì)長(zhǎng)結(jié)構(gòu),必須有深度雕刻的納米模板,因?yàn)槟0鍙臉?shù)脂薄膜脫離時(shí),必然會(huì)拉伸樹(shù)脂,所以能形成高出納米模板凹部的柱狀結(jié)構(gòu)體,這種方法就稱(chēng)為高寬比納米印刷技術(shù)。
在高寬比納米印刷技術(shù)中,可以簡(jiǎn)單地形成直徑為25nm、高3μm(平面比為12)的納米級(jí)柱狀結(jié)構(gòu)集合體(見(jiàn)圖2)。該結(jié)構(gòu)在以往的精密塑料成型中是很難形成的,但使用了高寬比納米印刷技術(shù),用一次壓延就能成型。
圖2 用納米印刷技術(shù)形成的納米柱結(jié)構(gòu)
3 前景
納米印刷技術(shù)被認(rèn)為是最接近實(shí)用化的制造技術(shù),日本已有納米印刷裝置在市場(chǎng)上出售。但為了形成良好的結(jié)構(gòu)體,必須要發(fā)展以納米模板和樹(shù)脂材料為先導(dǎo)的相關(guān)技術(shù)。目前,這一研究正在全世界范圍內(nèi)展開(kāi)。這一技術(shù)的應(yīng)用重點(diǎn)將是電子領(lǐng)域,但也開(kāi)始涉及邊緣能源等領(lǐng)域。
納米連接技術(shù)
納米粒子所具有的基本特性(如耐久性強(qiáng)、熔點(diǎn)和燒結(jié)溫度低)是眾所周知的,但其很多應(yīng)用都沒(méi)有得到拓展。國(guó)外有人提出了利用納米粒子的表面能量與低溫?zé)Y(jié)功能,把它作為連接材料的新型方案。用該連接法進(jìn)行低溫連接后,經(jīng)燒結(jié)后的納米粒子會(huì)使連接處具有高熔點(diǎn),這一優(yōu)點(diǎn)非常適合高溫連接較困難的無(wú)鉛焊接。這里主要介紹應(yīng)用有機(jī)物—銀復(fù)合納米粒子的連接工藝特點(diǎn)及其在電子焊接上的適用性。
1 有機(jī)物—銀復(fù)合納米粒子的特性
由于納米粒子表面呈活性,為防止其自身凝聚必須要做表面控制。我們所用的納米粒子是平均直徑為10nm左右的銀納米粒子,其表面用有機(jī)物保護(hù)層進(jìn)行了涂覆。圖3為有機(jī)物—銀復(fù)合納米粒子的掃描電鏡圖像,圖4為其結(jié)構(gòu)模式圖。
圖3 銀納米粒子TEM圖像
圖4 銀納米粉粒子模式圖
這種納米粒子的功能在其有機(jī)外殼熱分解去除后便展示出來(lái)。圖5顯示了銀納米粒子的熱分析結(jié)果(DTA/TG曲線)。從DTA曲線來(lái)看,在發(fā)熱反應(yīng)開(kāi)始的同時(shí),粒子質(zhì)量迅速減少,可以認(rèn)為這時(shí)的有機(jī)外殼已被分解與去除。而且,當(dāng)提升加熱速度時(shí),分解溫度則向高溫側(cè)移動(dòng)。圖6顯示了分解結(jié)束溫度與加熱速度的關(guān)系,從圖可知,即使把加熱速度加快到20℃/m,分解也在 265℃左右結(jié)束,在300℃以下出現(xiàn)納米粒子的功能。也就是說(shuō),在300℃以下可利用該納米粒子進(jìn)行連接。
圖5 銀納米粒子熱分析結(jié)果(DTA/TC曲線)
lign=center>
圖6 有機(jī)外殼分解結(jié)束溫度與加熱溫度的關(guān)系
2 應(yīng)用有機(jī)物—銀復(fù)合納米粒子的連接特點(diǎn)
日本大阪大學(xué)應(yīng)用銅質(zhì)圓板型試驗(yàn)片作銀納米粒子連接試驗(yàn),分別測(cè)出了銀微米粒子(平均粒徑為100nm)和銀納米粒子的脆斷強(qiáng)度(見(jiàn)圖7)。其中,該試驗(yàn)是在300℃、保溫300min、加壓5Mpa的條件下進(jìn)行的。如圖7所示,納米粒子連接與微粒子連接相比,顯示出了很高的脆斷強(qiáng)度。
圖7 脆斷強(qiáng)度結(jié)果
用電鏡分別對(duì)各自的連接斷面觀察,發(fā)現(xiàn)用銀微米粒子的場(chǎng)合,其與銅的連接面有空隙狀缺陷。銀微米粒子的觸點(diǎn)破壞發(fā)生在銀/銅界面,所得的5Mpa左右的觸點(diǎn)強(qiáng)度被認(rèn)為是兩者簧片的機(jī)械連接結(jié)果。而銀納米粒子的觸點(diǎn)破壞面被認(rèn)為是銀伸長(zhǎng)而塑性變形的痕跡,其在界面附近的銀層中會(huì)斷裂(圖8)。由此可見(jiàn),用銀納米粒子連接比用銀微粒子連接的界面強(qiáng)度更高。
圖8 銀納米粒子燒結(jié)層/Cu界面附近的TEM圖像
3 焊接參數(shù)對(duì)斷面強(qiáng)度的影響
圖9顯示了焊接溫度、焊接時(shí)間、加壓等焊接參數(shù)對(duì)銀納米粒子銅觸點(diǎn)斷面強(qiáng)度的影響。從圖可得,焊接溫度和加壓是影響斷面強(qiáng)度的關(guān)鍵參數(shù)。在焊接溫度方面,強(qiáng)度隨著加壓增大而上升,但在焊接溫度高的情況下,加壓的影響會(huì)變小。另外就焊接溫度而言,加壓低的情況下,焊接溫度對(duì)強(qiáng)度影響大,而加壓增高時(shí)則焊接溫度的影響變小。所以,在260℃左右的溫度下加大壓力,而盡可能在低加壓場(chǎng)合提高連接溫度,這樣做才最有效。
4 應(yīng)對(duì)高溫?zé)o鉛焊接的可能性
銀納米粒子連接法的一個(gè)最佳應(yīng)用,就是在電子領(lǐng)域的高溫?zé)o鉛焊接中。為實(shí)現(xiàn)安裝用焊料的無(wú)鉛化,人們一直在積極開(kāi)發(fā)新的替代品。原來(lái)使用的Sn-Pb共晶焊料(屬低中溫焊料)將由Sn-Zn系代替。但對(duì)于封裝內(nèi)焊接所使用的富鉛焊料(Pb≥85%的Sn-Pb焊料),目前還沒(méi)有合適的替代品。
圖9 銀納米粒子銅觸點(diǎn)的連接強(qiáng)度受焊接參數(shù)的影響
在現(xiàn)行富鉛高溫焊料液相溫度(300℃、315℃)以下的溫度范圍內(nèi)(260℃~300℃),銀納米粒子焊接工藝可以使用。圖10是連接條件與強(qiáng)度的關(guān)系。圖中虛線是富鉛焊料Pb-5Sn、 Pb-10Sn與Cu圓板型接頭的斷面強(qiáng)度(分別為18Mpa,30MPa),實(shí)線則代表銀納米粒子連接的斷面強(qiáng)度。由圖可知,銀納米粒子不僅有與Pb-5Sn相匹敵的強(qiáng)度,而且可以在低溫、低壓等較寬的連接條件下使用。其次,無(wú)論是升溫還是增壓,銀納米粒子連接的斷面強(qiáng)度都是其他兩者無(wú)可比擬的。而且,該連接的連接處有高熔點(diǎn),所以在隨后的2次焊接等熱工藝中不會(huì)熔化。另外,就芯片鍵合部所要求的電氣傳導(dǎo)度和熱傳導(dǎo)性而言,由于連接處是由金屬銀形成的,所以一定比現(xiàn)行高溫焊料的特性還要好。
圖10 銀納米粒子的銅觸點(diǎn)的連接強(qiáng)度與連接條件的關(guān)系
結(jié)論
作為納米粒子工業(yè)的新開(kāi)發(fā),銀納米粒子連接工藝有更大的應(yīng)用范圍。但是,還必須做詳細(xì)的連接機(jī)理以及與Cu以外各金屬連接性的基礎(chǔ)研究。另外,在電子安裝的實(shí)用化方面,還必須用實(shí)際的水準(zhǔn)來(lái)檢驗(yàn)連接處的電氣特性與耐環(huán)境可靠性。