一種基于人工神經(jīng)網(wǎng)絡(luò)的遙感圖像去條帶方法
引言
紅外焦平面探測是一種兼具輻射敏感和信號處理功能的新一代紅外探測技術(shù),但是由于制造過程和工作環(huán)境的影響, 使得焦平面陣列(FPA ) 各個陣列元即使在相同的輻射通量照射下,也會輸出不相同的響應(yīng)電壓。這種紅外響應(yīng)引起的遙感圖像的失真被稱作紅外圖像的非均勻性。為了提高觀測頻率、掃描范圍和空間分辨率,航天遙感一般采用推掃式的多元敏感線陣列對地物成像,通過觀察發(fā)現(xiàn),推掃得到的遙感圖像出現(xiàn)有規(guī)律的條帶失真,條帶寬度與遙感器多元敏感元個數(shù)的掃描線寬度一致,而且隨著時間的推移,條帶現(xiàn)象日趨嚴(yán)重,與單敏感元掃描圖像中的噪聲相比有明顯差異,這種失真其實是焦平面非均勻性的一種表現(xiàn)形式。條帶失真是影響線陣列紅外遙感圖像質(zhì)量的主要因素,必須要用諸如定標(biāo)的方法去除,但是由于探測器單元響應(yīng)會隨著時間和工作環(huán)境的變化改變,所以僅僅用定標(biāo)的方法來校正條帶失真有很大的局限性。
&nbs
圖1 BP網(wǎng)絡(luò)結(jié)構(gòu)圖
本文對焦平面非均勻性校正的神經(jīng)網(wǎng)絡(luò)法進行改進,介紹了一種基于人工神經(jīng)網(wǎng)絡(luò)的遙感圖像條帶消除的方法。這種方法可以完全不對FPA進行標(biāo)定(或自動標(biāo)定),并且可以通過線性和非線性模型校正,是紅外成像系統(tǒng)非均勻性校正的理想方法。
傳統(tǒng)校正方法
線性校正假設(shè)探測器單元的響應(yīng)呈線性:
y = ax + b
式中,x 為某一探測器單元的輸入信號,y 為可測的輸出信號。如果能求出增益因子a 和偏移因子b,就可求得無畸變的輸入信號x 。
傳統(tǒng)的非均勻性校正方法是在紅外焦平面成像系統(tǒng)使用前,用標(biāo)準(zhǔn)的兩個或多個參考溫度源,對每一個陣列單元響應(yīng)進行定標(biāo),以保證每個陣列單元在兩個或多個參考溫度之間有相同的響應(yīng),其校正值被存儲起來,在進行數(shù)字處理時固定地將其疊加上去。如果每個陣列單元的輸出特性隨時間是完全線性和穩(wěn)定的,那么,在上述定標(biāo)溫度范圍內(nèi),這種校正是有效的,不過隨著陣列數(shù)的增加,存儲校正系數(shù)所需要的存儲容量就大為增加。再加上系統(tǒng)的不穩(wěn)定性、陣列單元的非線性和1/ f 噪聲等因素的影響,使得經(jīng)過一段時間后,陣列單元特性會發(fā)生漂移或溫度背景范圍出現(xiàn)變化,必須對紅外焦平面陣列進行再定標(biāo)。顯然,這類校正方法不但麻煩,而且可能并不符合實際使用情況,從而導(dǎo)致校正效果不佳,因此,必須研究自適應(yīng)的非均勻性校正方法。
神經(jīng)網(wǎng)絡(luò)法
神經(jīng)網(wǎng)絡(luò)法的主要特征是通過自學(xué)習(xí)模擬信息內(nèi)部關(guān)系,進而獲得系統(tǒng)特征參數(shù)。假設(shè)輸入x和輸出y之間有一種復(fù)雜的關(guān)系f,神經(jīng)網(wǎng)絡(luò)通過不斷調(diào)整結(jié)構(gòu)的權(quán)重系數(shù)和閾值得到逼近的關(guān)系f眨?溝脃=f’(x); Rumelhart 和Mcclalland提出的多層前饋網(wǎng)絡(luò)的反向傳播算法(BP算法) ,由于解決了感知器不能解決的多層網(wǎng)絡(luò)學(xué)習(xí)算法的問題,可以很好地對復(fù)雜函數(shù)進行逼近,在工程中得到了廣泛的應(yīng)用。一般使用的BP網(wǎng)絡(luò)是一個三層前向網(wǎng)絡(luò),結(jié)構(gòu)如圖1所示。
假定校正輸出為Y(n),輸入為X(n),則:
Y(n)=WT(n)X(n)+VT(n)
其中W和V是增益矢量和截距矢量,神經(jīng)網(wǎng)絡(luò)法就是不斷依據(jù)實際景像調(diào)整W和V,來去除條帶失真。根據(jù)三層BP網(wǎng)絡(luò)結(jié)構(gòu),在中間層根據(jù)一定的法則計算某像素輸出,并以此作為該像素的輸出,反饋給線性校正神經(jīng)元來調(diào)整W和V。調(diào)整以誤差信號均方值最小為準(zhǔn)則。
對每一次迭代,令期望響應(yīng)與輸出響應(yīng)之差為誤差,用e(n)表示,則:
e(n)=f(n)-Y(n)=f(n)-WT(n)X(n)+VT(n)
其中,f(n)表示期望的校正后輸出,則誤差函數(shù)為:F(W,V)=(Wx+V-f)2,利用最陡下降法,可以得到計算W和V的迭代公式:
Wn+1=Wn-2ax(y-f)
Vn+1=Vn-2a(y-f)
式中:n為幀數(shù),a為步長。
神經(jīng)網(wǎng)絡(luò)算法的改進
從上面的分析可以得到,神經(jīng)網(wǎng)絡(luò)法對非均勻性的校正的關(guān)鍵是如何建立期望的校正輸出模型,在非線陣列的焦平面非均勻性校正中,一般將校正元相鄰元的輸出平均值作為本元的期望輸出帶入網(wǎng)絡(luò)進行網(wǎng)絡(luò)訓(xùn)練,發(fā)展出了4領(lǐng)域和8領(lǐng)域等方法。對于線陣列,由于探測單元只有兩個相鄰的探測元,直接應(yīng)用上面的方法進行網(wǎng)絡(luò)訓(xùn)練,校正效果不是太好。鑒于此,對算法進行如下改進。
假設(shè)一幅圖像有n條掃描線組成,對于每一條掃描線響應(yīng),可以用Yk(i)表示,其中k表示第k條掃描線 ,i表示線陣列的第i個探測元??梢詫⒕€陣列擴展為有三條線陣列的焦平面,在第k次成像時,焦平面成像為[Yk-1(i):Yk(i):Yk+1(i)],這樣就可以假定Yk(i)的期望校正輸出為:
Y’k(i)=1/8(Yk(i-1)+Yk(i+1)+Yk-1(i-1)+Yk-1(i)+Yk-1(i+1)+Yk+1(i-1)+Yk+1(i)+Yk+1(i+1))
算法過程如下:
1.計算鄰域平均值:
Y’k(i)=1/8(Yk(i-1)+Yk(i+1)+Yk-1(i)+Yk+1(i)+Yk-1(i-1)+Yk+1(i+1)+Yk-1(i-1)+Yk+1(i+1))
2. 令y = Wx + V ,其中W為增益校正因子,V為偏移量校正因子。誤差函數(shù):
F(W,V)=(Wx+V-f)2
利用此函數(shù)的梯度函數(shù)和最陡下降法,可以得到計算和的迭代公式:
Wn+1=Wn-2ax(y-f)
Vn+1=Vn-2a(y-f)
式中 n為幀數(shù),a為步長。
3.利用線性校正算法得到:
Yn+1=Wn+1×Xn+a+Vn+1
實驗結(jié)果
應(yīng)用上面的算法對遙感紅外圖像進行去條帶實驗。結(jié)果如圖2所示。其中a、c、e為原圖像,b、d、f為校正后對應(yīng)圖像,可以看出,校正效果比較明顯。
結(jié)語
紅外成像技術(shù)正在突飛猛進地發(fā)展,紅外探測器是核心部件,非均勻性問題嚴(yán)重影響它的性能。因此,解決條帶問題是線陣列探測器發(fā)展的關(guān)鍵,雖然神經(jīng)網(wǎng)絡(luò)法可以進行去條帶處理,但是離實用還有一段距離,尤其神經(jīng)網(wǎng)絡(luò)訓(xùn)練的速度遠遠達不到實時應(yīng)用的要求。本文通過對神經(jīng)元算法進行改進得到了一種高效、高速、高精度的去條帶方法。
參考文獻
1 Scribner D A et al. Physical Limitations to Nonuniformity Correction in IR Focal Plane Arrays. Focal Plane Arrays : Technology and Applications. SPIE. 1987 , 865 :185~202.
2 Scribner, D.A,Sarkady, K.A.; Kruer, M.R, Caulfield, J.T,Hunt, J.D, Herman, C. Adaptive nonuniformity correction for IR focal plane arrays using neural networks. Proceedings of the SPIE,1991,1541 : 100-9。
3 Scribner D A et al. Nonuniformity correction for staring IR focal plane arrays using scenebased techniques. Infrared Detectors and Focal Plane Arrays. SPIE. 1990 , 1308 :224~233.
4 曹治國,魏洛剛,張?zhí)煨颍!∞r(nóng). 基于神經(jīng)網(wǎng)絡(luò)法的焦平面器件非均勻性校正技術(shù)研究,紅外與激光工程,2000,29(1):65~68