當(dāng)前位置:首頁 > 工業(yè)控制 > 電子設(shè)計自動化

近年來,使用GPU(通用圖形處理器)進行科學(xué)計算已變得十分普遍。GPU最初設(shè)計用于圖像密集型視頻游戲產(chǎn)業(yè)中的圖形渲染繪制,但近年來GPU不斷發(fā)展,現(xiàn)可用于更廣泛的用途。研究人員可對其進行程序設(shè)計以執(zhí)行計算,用于數(shù)據(jù)分析、數(shù)據(jù)可視化,以及金融和生物建模等應(yīng)用。

MATLAB的GPU支持為活躍于許多學(xué)科的大量研究人員(不一定是CUDA編程專家)提供了一種加速科學(xué)計算的新方法。考慮到MATLAB主要是用于科學(xué)計算和工程計算,因此MATLAB最新提供的GPU支持是一種邏輯開發(fā),以便讓非編程專家同樣能夠使用此技術(shù)。

有了MATLAB的這些新功能之后,用戶便可以利用GPU來實現(xiàn)其應(yīng)用程序的顯著提速,而無需進行低級的C語言程序設(shè)計。這一最新技術(shù)發(fā)展提供了現(xiàn)有方法以外的其他方法來加速特定硬件上的MATLAB算法執(zhí)行。

使用MATLAB進行GPU程序設(shè)計

MATLAB中的CUDA支持為GPU加速后的MATLAB操作提供了基礎(chǔ),并實現(xiàn)了現(xiàn)有CUDA內(nèi)核與MATLAB應(yīng)用程序的集成。用戶現(xiàn)在可以使用不同的程序設(shè)計技術(shù)來實現(xiàn)易用性與執(zhí)行優(yōu)化兩者的適當(dāng)平衡(參考文獻(xiàn)1)。

MATLAB支持啟用了CUDA的NVIDIA GPU(具有1.3或更高版本計算功能),例如Tesla 10系列和基于Fermi架構(gòu)的尖端Tesla 20系列。GPU 1.3版提供的雙浮點精度全面支持是保證大多數(shù)科學(xué)計算不因速度權(quán)衡而損失精度(loss Svb)的先決條件,并且可以將代碼更改的需要減到最低。

在MATLAB中實現(xiàn)GPU計算的三種方法加速了整個應(yīng)用程序的進度,并實現(xiàn)了所需的建模復(fù)雜度與執(zhí)行控制間的權(quán)衡方案。

在GPU上執(zhí)行重載的MATLAB函數(shù)

最簡單的編程模式包括對GPU(GPU數(shù)組)上已加載數(shù)據(jù)的MATLAB函數(shù)直接調(diào)用。用戶可以決定何時在MATLAB工作區(qū)和GPU之間移動數(shù)據(jù)或創(chuàng)建存儲在GPU內(nèi)存中的數(shù)據(jù),以盡可能減少主機與設(shè)備間數(shù)據(jù)傳輸?shù)拈_銷。在第一個版本中,已重載了超過100個MATLAB函數(shù)(包括FFT和矩陣除法),以在GPU數(shù)組中無縫執(zhí)行。用戶可在同一函數(shù)調(diào)用中將在GPU上加載的數(shù)據(jù)和MATLAB工作區(qū)中的數(shù)據(jù)混合,以實現(xiàn)最優(yōu)的靈活性與易用性。

這種方法提供了一個簡單的接口,讓用戶可以在GPU上直接執(zhí)行標(biāo)準(zhǔn)函數(shù),從而獲得性能提升,而無需花費任何時間開發(fā)專門的代碼。


MATLAB代碼示例1,在GPU上執(zhí)行矩陣除法

當(dāng)處理存儲在GPU內(nèi)存中的數(shù)據(jù)時,會重載 操作符以便在GPU上運行。在這種情況下,用戶不得對函數(shù)進行任何更改,只能指定何時從GPU內(nèi)存移動和檢索數(shù)據(jù),這兩種操作分別通過gpuArray和gather命令來完成。

在MATLAB中定義GPU內(nèi)核

作為第二種編程模式,用戶可以定義MATLAB函數(shù),執(zhí)行要對GPU上的向量化數(shù)據(jù)執(zhí)行的標(biāo)量算術(shù)運算。使用這種方法,用戶可以擴展和自定義在GPU上執(zhí)行的函數(shù)集,以構(gòu)建復(fù)雜應(yīng)用程序并實現(xiàn)性能加速,因為需要進行的內(nèi)核調(diào)用和數(shù)據(jù)傳輸比以前少。

這種編程模式允許用算術(shù)方法定義要在GPU上執(zhí)行的復(fù)雜內(nèi)核,只需使用MATLAB語言即可。使用這種方法,可在GPU上執(zhí)行復(fù)雜的算術(shù)運算,充分利用數(shù)據(jù)并行化并最小化與內(nèi)核調(diào)用和數(shù)據(jù)傳輸有關(guān)的開銷。


MATLAB代碼示例2,將MATLAB函數(shù)定義為GPU內(nèi)核

同樣,在這種情況下,用戶不得對函數(shù)進行任何更改,只能指定何時從GPU內(nèi)存移動和檢索數(shù)據(jù)以及使用arrayfun命令調(diào)用函數(shù)。TaylorFun函數(shù)會在A_gpu矢量的各個元素上執(zhí)行,充分利用數(shù)據(jù)并行化。

直接從MATLAB調(diào)用CUDA代碼

為了進一步擴展在GPU上執(zhí)行的集合函數(shù),可以從CUDA或PTX代碼中創(chuàng)建一個MATLAB可調(diào)用的GPU內(nèi)核。第三種編程模式可以讓用戶輕松地從MATLAB直接調(diào)用已有CUDA代碼,使非CUDA專家同樣能夠進行代碼重用。

這種編程模式同樣有助于CUDA開發(fā)人員的工作,因為它提供了直接從MATLAB進行CUDA代碼測試的整體解決方案,無需使用GPU在環(huán)配置進行基于文件的數(shù)據(jù)交換。此外,用戶還可以直接從MATLAB試用有關(guān)線程塊大小和共享內(nèi)存的參數(shù)。


MATLAB代碼示例3,直接從MATLAB調(diào)用CUDA代碼

對于精通CUDA的程序員而言,這種方法可實現(xiàn)輕松混合串行與高度并行代碼的可能,從而獲得最優(yōu)的性能,而無需開發(fā)整個應(yīng)用程序的C語言代碼。

在編譯代碼并生成ptx文件之后,用戶可向MATLAB聲明該內(nèi)核,設(shè)置有關(guān)線程塊大小的屬性,并直接對數(shù)據(jù)調(diào)用內(nèi)核。同樣,在這種情況下,用戶可以決定何時在主機內(nèi)存與設(shè)備之間移動數(shù)據(jù),以盡可能減少數(shù)據(jù)傳輸?shù)拈_銷。

GPU和CPU間的執(zhí)行權(quán)衡

相比多核處理器,GPU可顯著地加速高度并行操作的執(zhí)行。實踐證明,GPU的大規(guī)模并行體系結(jié)構(gòu)有助于從金融計算到分子動力學(xué)等許多領(lǐng)域的密集科學(xué)計算。通過將計算密集型內(nèi)核映射到GPU并在CPU上運行應(yīng)用程序的順序部分,可以將整體執(zhí)行加速5倍到超過100倍(參考文獻(xiàn)2)。

MATLAB GPU支持可以通過無縫方式為大規(guī)模并行復(fù)雜應(yīng)用程序提速,而不損失精度。通過支持1.3或更高版本的CUDA,MathWorks解決方案可完全實現(xiàn)GPU上的雙浮點精度計算,從而保證不因任何速度權(quán)衡而損失精度。

可使用GPU實現(xiàn)的加速主要取決于主機內(nèi)存和GPU設(shè)備間數(shù)據(jù)傳輸?shù)拈_銷。計算密集型并行應(yīng)用程序可減少數(shù)據(jù)傳輸量,將能體驗更快的程序執(zhí)行。同樣,以上考慮明顯適用于在GPU上執(zhí)行的MATLAB應(yīng)用程序(參見圖 1)。


圖1,使用雙浮點精度實現(xiàn)矩陣除法的計算加速見MATLAB代碼示例1所述。注意:對于小型矩陣而言,設(shè)備與主機間的數(shù)據(jù)傳輸開銷是最主要的,因此可能不會發(fā)生任何加速,或者GPU上的程序執(zhí)行甚至可能會比在CPU上的執(zhí)行還要慢

根據(jù)計算復(fù)雜度和并行程度的不同,在所有GPU和CPU上執(zhí)行復(fù)雜應(yīng)用程序時,可以體驗到最佳的加速效果。這視程序員的經(jīng)驗和水平而異,要看他是否能確定最佳的執(zhí)行平臺?;谶@些原因,很難估計使用GPU可獲得的最大加速效果。根據(jù)可用的硬件平臺和應(yīng)用程序的復(fù)雜性,程序員可以使用MATLAB配置代碼以實現(xiàn)最快執(zhí)行,并作出目標(biāo)平臺的最佳選擇(圖2)。


圖2,計算不同內(nèi)核大小的泰勒級數(shù)所需的執(zhí)行時間見MATLAB代碼示例2所述。注意:當(dāng)在四核處理器上執(zhí)行該函數(shù)時,MATLAB隱式多線程已對其進行了加速,無需修改應(yīng)用程序代碼。當(dāng)計算加速大于數(shù)據(jù)傳輸?shù)拈_銷時,GPU對復(fù)雜函數(shù)更有幫助。GPU計算時間幾乎與內(nèi)核復(fù)雜度無關(guān)

結(jié)論

為了實現(xiàn)GPU的最大靈活性和易用性,MathWorks提供了不同的編程模式來更好地滿足開發(fā)人員的偏好。有了MATLAB GPU支持,用戶便可以一種無縫且不費力的方式加速其應(yīng)用程序。此外,GPU支持已集成在Parallel Computing Toolbox中,因此可以對所有具有并行性的應(yīng)用程序進行加速,無論其位于GPU上還是CPU上,并可最終擴展到集群。因此,MATLAB GPU支持只需最少的編程工作,便可將 MATLAB的任務(wù)與數(shù)據(jù)并行化功能擴展到更多硬件平臺。


本站聲明: 本文章由作者或相關(guān)機構(gòu)授權(quán)發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點,本站亦不保證或承諾內(nèi)容真實性等。需要轉(zhuǎn)載請聯(lián)系該專欄作者,如若文章內(nèi)容侵犯您的權(quán)益,請及時聯(lián)系本站刪除。
換一批
延伸閱讀

9月2日消息,不造車的華為或?qū)⒋呱龈蟮莫毥谦F公司,隨著阿維塔和賽力斯的入局,華為引望愈發(fā)顯得引人矚目。

關(guān)鍵字: 阿維塔 塞力斯 華為

加利福尼亞州圣克拉拉縣2024年8月30日 /美通社/ -- 數(shù)字化轉(zhuǎn)型技術(shù)解決方案公司Trianz今天宣布,該公司與Amazon Web Services (AWS)簽訂了...

關(guān)鍵字: AWS AN BSP 數(shù)字化

倫敦2024年8月29日 /美通社/ -- 英國汽車技術(shù)公司SODA.Auto推出其旗艦產(chǎn)品SODA V,這是全球首款涵蓋汽車工程師從創(chuàng)意到認(rèn)證的所有需求的工具,可用于創(chuàng)建軟件定義汽車。 SODA V工具的開發(fā)耗時1.5...

關(guān)鍵字: 汽車 人工智能 智能驅(qū)動 BSP

北京2024年8月28日 /美通社/ -- 越來越多用戶希望企業(yè)業(yè)務(wù)能7×24不間斷運行,同時企業(yè)卻面臨越來越多業(yè)務(wù)中斷的風(fēng)險,如企業(yè)系統(tǒng)復(fù)雜性的增加,頻繁的功能更新和發(fā)布等。如何確保業(yè)務(wù)連續(xù)性,提升韌性,成...

關(guān)鍵字: 亞馬遜 解密 控制平面 BSP

8月30日消息,據(jù)媒體報道,騰訊和網(wǎng)易近期正在縮減他們對日本游戲市場的投資。

關(guān)鍵字: 騰訊 編碼器 CPU

8月28日消息,今天上午,2024中國國際大數(shù)據(jù)產(chǎn)業(yè)博覽會開幕式在貴陽舉行,華為董事、質(zhì)量流程IT總裁陶景文發(fā)表了演講。

關(guān)鍵字: 華為 12nm EDA 半導(dǎo)體

8月28日消息,在2024中國國際大數(shù)據(jù)產(chǎn)業(yè)博覽會上,華為常務(wù)董事、華為云CEO張平安發(fā)表演講稱,數(shù)字世界的話語權(quán)最終是由生態(tài)的繁榮決定的。

關(guān)鍵字: 華為 12nm 手機 衛(wèi)星通信

要點: 有效應(yīng)對環(huán)境變化,經(jīng)營業(yè)績穩(wěn)中有升 落實提質(zhì)增效舉措,毛利潤率延續(xù)升勢 戰(zhàn)略布局成效顯著,戰(zhàn)新業(yè)務(wù)引領(lǐng)增長 以科技創(chuàng)新為引領(lǐng),提升企業(yè)核心競爭力 堅持高質(zhì)量發(fā)展策略,塑強核心競爭優(yōu)勢...

關(guān)鍵字: 通信 BSP 電信運營商 數(shù)字經(jīng)濟

北京2024年8月27日 /美通社/ -- 8月21日,由中央廣播電視總臺與中國電影電視技術(shù)學(xué)會聯(lián)合牽頭組建的NVI技術(shù)創(chuàng)新聯(lián)盟在BIRTV2024超高清全產(chǎn)業(yè)鏈發(fā)展研討會上宣布正式成立。 活動現(xiàn)場 NVI技術(shù)創(chuàng)新聯(lián)...

關(guān)鍵字: VI 傳輸協(xié)議 音頻 BSP

北京2024年8月27日 /美通社/ -- 在8月23日舉辦的2024年長三角生態(tài)綠色一體化發(fā)展示范區(qū)聯(lián)合招商會上,軟通動力信息技術(shù)(集團)股份有限公司(以下簡稱"軟通動力")與長三角投資(上海)有限...

關(guān)鍵字: BSP 信息技術(shù)
關(guān)閉
關(guān)閉