C51程序設(shè)計(jì)中的編程中的字節(jié)對齊問題
現(xiàn)代計(jì)算機(jī)中內(nèi)存空間都是按照byte劃分的,從理論上講似乎對任何類型的變量的訪問可以從任何地址開始,但實(shí)際情況是在訪問特定類型變量的時候經(jīng)常在特 定的內(nèi)存地址訪問,這就需要各種類型數(shù)據(jù)按照一定的規(guī)則在空間上排列,而不是順序的一個接一個的排放,這就是對齊。
對齊的作用和原因:各個硬件平臺對存儲空間的處理上有很大的不同。一些平臺對某些特定類型的數(shù)據(jù)只能從某些特定地址開始存取。比如有些架構(gòu)的CPU在訪問 一個沒有進(jìn)行對齊的變量的時候會發(fā)生錯誤,那么在這種架構(gòu)下編程必須保證字節(jié)對齊.其他平臺可能沒有這種情況,但是最常見的是如果不按照適合其平臺要求對 數(shù)據(jù)存放進(jìn)行對齊,會在存取效率上帶來損失。比如有些平臺每次讀都是從偶地址開始,如果一個int型(假設(shè)為32位系統(tǒng))如果存放在偶地址開始的地方,那 么一個讀周期就可以讀出這32bit,而如果存放在奇地址開始的地方,就需要2個讀周期,并對兩次讀出的結(jié)果的高低字節(jié)進(jìn)行拼湊才能得到該32bit數(shù) 據(jù)。顯然在讀取效率上下降很多。
先讓我們看幾個例子吧(32bit,x86環(huán)境,gCC編譯器):
設(shè)結(jié)構(gòu)體如下定義:
struct A
{
int a;
char b;
short c;
};
struct B
{
char b;
int a;
short c;
};
現(xiàn)在已知32位機(jī)器上各種數(shù)據(jù)類型的長度如下:
char:1(有符號無符號同)
short:2(有符號無符號同)
int:4(有符號無符號同)
long:4(有符號無符號同)
float:4 double:8
那么上面兩個結(jié)構(gòu)大小如何呢?
結(jié)果是:
sizeof(strcut A)值為8
sizeof(struct B)的值卻是12
結(jié)構(gòu)體A中包含了4字節(jié)長度的int一個,1字節(jié)長度的char一個和2字節(jié)長度的short型數(shù)據(jù)一個,B也一樣;按理說A,B大小應(yīng)該都是7字節(jié)。
之所以出現(xiàn)上面的結(jié)果是因?yàn)榫幾g器要對數(shù)據(jù)成員在空間上進(jìn)行對齊。上面是按照編譯器的默認(rèn)設(shè)置進(jìn)行對齊的結(jié)果,那么我們是不是可以改變編譯器的這種默認(rèn)對齊設(shè)置呢,當(dāng)然可以.例如:
#pragmaPACk (2) /*指定按2字節(jié)對齊*/
struct C
{
char b;
int a;
short c;
};
#pragma pack () /*取消指定對齊,恢復(fù)缺省對齊*/
sizeof(struct C)值是8。
修改對齊值為1:
#pragma pack (1) /*指定按1字節(jié)對齊*/
struct D
{
char b;
int a;
short c;
};
#pragma pack () /*取消指定對齊,恢復(fù)缺省對齊*/
sizeof(struct D)值為7。
后面我們再講解#pragma pack()的作用.
先讓我們看四個重要的基本概念:
1.數(shù)據(jù)類型自身的對齊值:
對于char型數(shù)據(jù),其自身對齊值為1,對于short型為2,對于int,float,double類型,其自身對齊值為4,單位字節(jié)。
2.結(jié)構(gòu)體或者類的自身對齊值:其成員中自身對齊值最大的那個值。
3.指定對齊值:#pragma pack (value)時的指定對齊值value。
4.數(shù)據(jù)成員、結(jié)構(gòu)體和類的有效對齊值:自身對齊值和指定對齊值中小的那個值。
有 了這些值,我們就可以很方便的來討論具體數(shù)據(jù)結(jié)構(gòu)的成員和其自身的對齊方式。有效對齊值N是最終用來決定數(shù)據(jù)存放地址方式的值,最重要。有效對齊N,就是 表示“對齊在N上”,也就是說該數(shù)據(jù)的"存放起始地址%N=0".而數(shù)據(jù)結(jié)構(gòu)中的數(shù)據(jù)變量都是按定義的先后順序來排放的。第一個數(shù)據(jù)變量的起始地址就是數(shù) 據(jù)結(jié)構(gòu)的起始地址。結(jié)構(gòu)體的成員變量要對齊排放,結(jié)構(gòu)體本身也要根據(jù)自身的有效對齊值圓整(就是結(jié)構(gòu)體成員變量占用總長度需要是對結(jié)構(gòu)體有效對齊值的整數(shù) 倍,結(jié)合下面例子理解)。這樣就不能理解上面的幾個例子的值了。
例子分析:
分析例子B;
struct B
{
char b;
int a;
short c;
};
假 設(shè)B從地址空間0x0000開始排放。該例子中沒有定義指定對齊值,在筆者環(huán)境下,該值默認(rèn)為4。第一個成員變量b的自身對齊值是1,比指定或者默認(rèn)指定 對齊值4小,所以其有效對齊值為1,所以其存放地址0x0000符合0x0000%1=0.第二個成員變量a,其自身對齊值為4,所以有效對齊值也為4, 所以只能存放在起始地址為0x0004到0x0007這四個連續(xù)的字節(jié)空間中,復(fù)核0x0004%4=0,且緊靠第一個變量。第三個變量c,自身對齊值為 2,所以有效對齊值也是2,可以存放在0x0008到0x0009這兩個字節(jié)空間中,符合0x0008%2=0。所以從0x0000到0x0009存放的 都是B內(nèi)容。再看數(shù)據(jù)結(jié)構(gòu)B的自身對齊值為其變量中最大對齊值(這里是b)所以就是4,所以結(jié)構(gòu)體的有效對齊值也是4。根據(jù)結(jié)構(gòu)體圓整的要求, 0x0009到0x0000=10字節(jié),(10+2)%4=0。所以0x0000A到0x000B也為結(jié)構(gòu)體B所占用。故B從0x0000到0x000B 共有12個字節(jié),sizeof(struct B)=12;其實(shí)如果就這一個就來說它已將滿足字節(jié)對齊了, 因?yàn)樗钠鹗嫉刂肥?,因此肯定是對齊的,之所以在后面補(bǔ)充2個字節(jié),是因?yàn)榫幾g器為了實(shí)現(xiàn)結(jié)構(gòu)數(shù)組的存取效率,試想如果我們定義了一個結(jié)構(gòu)B的數(shù)組,那 么第一個結(jié)構(gòu)起始地址是0沒有問題,但是第二個結(jié)構(gòu)呢?按照數(shù)組的定義,數(shù)組中所有元素都是緊挨著的,如果我們不把結(jié)構(gòu)的大小補(bǔ)充為4的整數(shù)倍,那么下一 個結(jié)構(gòu)的起始地址將是0x0000A,這顯然不能滿足結(jié)構(gòu)的地址對齊了,因此我們要把結(jié)構(gòu)補(bǔ)充成有效對齊大小的整數(shù)倍.其實(shí)諸如:對于char型數(shù)據(jù),其 自身對齊值為1,對于short型為2,對于int,float,double類型,其自身對齊值為4,這些已有類型的自身對齊值也是基于數(shù)組考慮的,只 是因?yàn)檫@些類型的長度已知了,所以他們的自身對齊值也就已知了.
同理,分析上面例子C:
#pragma pack (2) /*指定按2字節(jié)對齊*/
struct C
{
char b;
int a;
short c;
};
#pragma pack () /*取消指定對齊,恢復(fù)缺省對齊*/
第 一個變量b的自身對齊值為1,指定對齊值為2,所以,其有效對齊值為1,假設(shè)C從0x0000開始,那么b存放在0x0000,符合0x0000%1= 0;第二個變量,自身對齊值為4,指定對齊值為2,所以有效對齊值為2,所以順序存放在0x0002、0x0003、0x0004、0x0005四個連續(xù) 字節(jié)中,符合0x0002%2=0。第三個變量c的自身對齊值為2,所以有效對齊值為2,順序存放
在0x0006、0x0007中,符合 0x0006%2=0。所以從0x0000到0x00007共八字節(jié)存放的是C的變量。又C的自身對齊值為4,所以C的有效對齊值為2。又8%2=0,C 只占用0x0000到0x0007的八個字節(jié)。所以sizeof(struct C)=8.
1.在VC IDE中,可以這樣修改:[Project]|[Settings],c/c++選項(xiàng)卡Category的Code Generation選項(xiàng)的Struct Member Alignment中修改,默認(rèn)是8字節(jié)。
2.在編碼時,可以這樣動態(tài)修改:#pragma pack .注意:是pragma而不是progma.
如果在編程的時候要考慮節(jié)約空間的話,那么我們只需要假定結(jié)構(gòu)的首地址是0,然后各個變量按照上面的原則進(jìn)行排列即可,基本的原則就是把結(jié)構(gòu)中的變量按照 類型大小從小到大聲明,盡量減少中間的填補(bǔ)空間.還有一種就是為了以空間換取時間的效率,我們顯示的進(jìn)行填補(bǔ)空間進(jìn)行對齊,比如:有一種使用空間換時間做 法是顯式的插入reserved成員:
struct A{
char a;
char reserved[3];//使用空間換時間
int b;
}
reserved成員對我們的程序沒有什么意義,它只是起到填補(bǔ)空間以達(dá)到字節(jié)對齊的目的,當(dāng)然即使不加這個成員通常編譯器也會給我們自動填補(bǔ)對齊,我們自己加上它只是起到顯式的提醒作用.
代碼中關(guān)于對齊的隱患,很多是隱式的。比如在強(qiáng)制類型轉(zhuǎn)換的時候。例如:
unsigned int i = 0x12345678;
unsigned char *p=NULL;
unsigned short *p1=NULL;
p=&i;
*p=0x00;
p1=(unsigned short *)(p+1);
*p1=0x0000;
最后兩句代碼,從奇數(shù)邊界去訪問unsignedshort型變量,顯然不符合對齊的規(guī)定。
在x86上,類似的操作只會影響效率,但是在MIPS或者sparc上,可能就是一個error,因?yàn)樗鼈円蟊仨氉止?jié)對齊.
如果出現(xiàn)對齊或者賦值問題首先查看
1. 編譯器的big little端設(shè)置
2. 看這種體系本身是否支持非對齊訪問
3. 如果支持看設(shè)置了對齊與否,如果沒有則看訪問時需要加某些特殊的修飾來標(biāo)志其特殊訪問操作。