當(dāng)前位置:首頁 > 單片機(jī) > 單片機(jī)
[導(dǎo)讀]注意是UART4,不是USART4在stm32中UART和USART是不相同的 USART是通用同步/異步串行接收/發(fā)送器 UART是通用異步收發(fā)傳輸器 簡單區(qū)分同步和異步就是看通信時需不需要對外提供時鐘輸出,我們平時用的串口通信基本都是

注意是UART4,不是USART4



在stm32中UART和USART是不相同的

USART是通用同步/異步串行接收/發(fā)送器

UART是通用異步收發(fā)傳輸器


簡單區(qū)分同步和異步就是看通信時需不需要對外提供時鐘輸出,我們平時用的串口通信基本都是 UART。


USART支持同步模式,因此USART 需要同步時鐘信號USART_CK(如STM32 單片機(jī)),通常情況同步信號很少使用,因此一般的單片機(jī)UART和USART使用方式是一樣的,都使用異步模式。


UART需要固定的波特率,就是說兩位數(shù)據(jù)的間隔要相等。 UART總線是異步串口,一般由波特率產(chǎn)生器(產(chǎn)生的波特率等于傳輸波特率的16倍)、UART接收器、UART發(fā)送器組成,硬件上有兩根線,一根用于發(fā)送,一根用于接收。 顯然,如果用通用IO口模擬UART總線,則需一個輸入口,一個輸出口。


UART是一個并行輸入成為串行輸出的芯片,通常集成在主板上,多數(shù)是16550AFN芯片。因為計算機(jī)內(nèi)部采用并行數(shù)據(jù),不能直接把數(shù)據(jù)發(fā)到Modem,必須經(jīng)過UART整理才能進(jìn)行異步傳輸,其過程為:CPU先把準(zhǔn)備寫入串行設(shè)備的數(shù)據(jù)放到UART的寄存器(臨時內(nèi)存塊)中,再通過FIFO(First Input First Output,先入先出隊列)傳送到串行設(shè)備,若是沒有FIFO,信息將變得雜亂無章,不可能傳送到Modem。


作為接口的一部分,UART還提供以下功能:將由計算機(jī)內(nèi)部傳送過來的并行數(shù)據(jù)轉(zhuǎn)換為輸出的串行數(shù)據(jù)流。將計算機(jī)外部來的串行數(shù)據(jù)轉(zhuǎn)換為字節(jié),供計算機(jī)內(nèi)部使用并行數(shù)據(jù)的器件使用。在輸出的串行數(shù)據(jù)流中加入奇偶校驗位,并對從外部接收的數(shù)據(jù)流進(jìn)行奇偶校驗。在輸出數(shù)據(jù)流中加入啟停標(biāo)記,并從接收數(shù)據(jù)流中刪除啟停標(biāo)記。處理由鍵盤或鼠標(biāo)發(fā)出的中斷信號(鍵盤和鼠標(biāo)也是串行設(shè)備)??梢蕴幚碛嬎銠C(jī)與外部串行設(shè)備的同步管理問題。


USART收發(fā)模塊一般分為三大部分:時鐘發(fā)生器、數(shù)據(jù)發(fā)送器和接收器??刂萍拇嫫鳛樗械哪K共享。時鐘發(fā)生器由同步邏輯電路(在同步從模式下由外部時鐘輸入驅(qū)動)和波特率發(fā)生器組成。發(fā)送時鐘引腳XCK僅用于同步發(fā)送模式下,發(fā)送器部分由一個單獨的寫入緩沖器(發(fā)送UDR)、一個串行移位寄存器、校驗位發(fā)生器和用于處理不同湞結(jié)構(gòu)的控制邏輯電路構(gòu)成。使用寫入緩沖器,實現(xiàn)了連續(xù)發(fā)送多湞數(shù)據(jù)無延時的通信。接收器是USART模塊最復(fù)雜的部分,最主要的是時鐘和數(shù)據(jù)接收單元。數(shù)據(jù)接收單元用作異步數(shù)據(jù)的接收。除了接收單元,接收器還包括校驗位校驗器、控制邏輯、移位寄存器和兩級接收緩沖器(接收UDR)。接收器支持與發(fā)送器相同的幀結(jié)構(gòu),同時支持楨錯誤、數(shù)據(jù)溢出和校驗錯誤的檢測。USART是一個全雙工通用同步/異步串行收發(fā)模塊,該接口是一個高度靈活的串行通信設(shè)備。


綜上可以看出,USART相對UART來說是在異步通信的基礎(chǔ)上還有同步的功能,USART能夠提供主動時鐘。


UAST4的配置

注意:在使用UART4之前,首先要確保你的單片機(jī)是支持UART4的(我用到的單片機(jī)是STM32F103vet6),具體是否支持UART4,可以參考數(shù)據(jù)手冊。同時要注意,UART4是掛載到APB1總線上的!






初始化程序:

為了方便調(diào)試輸出,我將USART1也進(jìn)行了初始化,對比一下不難發(fā)現(xiàn)UASRT1的初始化和UART4的初始化幾乎相同


GPIO_InitTypeDefGPIO_InitStructure;

USART_InitTypeDefUSART_InitStructure;

/*configUSART1clock*/

RCC_APB2PeriphClockCmd(RCC_APB2Periph_USART1|RCC_APB2Periph_GPIOA,ENABLE);

RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOC,ENABLE);

RCC_APB2PeriphClockCmd(RCC_APB2Periph_AFIO,ENABLE);

RCC_APB1PeriphClockCmd(RCC_APB1Periph_UART4,ENABLE);//注意UART4是掛載在APB1總線上的,用RCC_APB1PeriphClockCmd()函數(shù)初始化!

/*USART1GPIOconfig*/

/*ConfigureUSART1Tx(PA.09)asalternatefunctionpush-pull*/

GPIO_InitStructure.GPIO_Pin=GPIO_Pin_9;

GPIO_InitStructure.GPIO_Mode=GPIO_Mode_AF_PP;

GPIO_InitStructure.GPIO_Speed=GPIO_Speed_50MHz;

GPIO_Init(GPIOA,&GPIO_InitStructure);

/*ConfigureUSART1Rx(PA.10)asinputfloating*/

GPIO_InitStructure.GPIO_Pin=GPIO_Pin_10;

GPIO_InitStructure.GPIO_Mode=GPIO_Mode_IPU;

GPIO_Init(GPIOA,&GPIO_InitStructure);

/*USART1modeconfig*/

USART_InitStructure.USART_BaudRate=115200;

USART_InitStructure.USART_WordLength=USART_WordLength_8b;

USART_InitStructure.USART_StopBits=USART_StopBits_1;

USART_InitStructure.USART_Parity=USART_Parity_No;

USART_InitStructure.USART_HardwareFlowControl=USART_HardwareFlowControl_None;

USART_InitStructure.USART_Mode=USART_Mode_Rx|USART_Mode_Tx;

USART_Init(USART1,&USART_InitStructure);

USART_Cmd(USART1,ENABLE);

//3?ê??ˉUART4-TX-PC10

GPIO_InitStructure.GPIO_Pin=GPIO_Pin_10;

GPIO_InitStructure.GPIO_Mode=GPIO_Mode_AF_PP;

GPIO_InitStructure.GPIO_Speed=GPIO_Speed_50MHz;

GPIO_Init(GPIOC,&GPIO_InitStructure);

//UART-RX-PC11

GPIO_InitStructure.GPIO_Pin=GPIO_Pin_11;

GPIO_InitStructure.GPIO_Mode=GPIO_Mode_IPU;

USART_InitStructure.USART_BaudRate=9600;

USART_InitStructure.USART_WordLength=USART_WordLength_8b;

USART_InitStructure.USART_StopBits=USART_StopBits_1;

USART_InitStructure.USART_Parity=USART_Parity_No;

USART_InitStructure.USART_HardwareFlowControl=USART_HardwareFlowControl_None;

USART_InitStructure.USART_Mode=USART_Mode_Rx|USART_Mode_Tx;

USART_Init(UART4,&USART_InitStructure);

USART_Cmd(UART4,ENABLE);

USART_ClearFlag(UART4,USART_FLAG_TC);



本站聲明: 本文章由作者或相關(guān)機(jī)構(gòu)授權(quán)發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點,本站亦不保證或承諾內(nèi)容真實性等。需要轉(zhuǎn)載請聯(lián)系該專欄作者,如若文章內(nèi)容侵犯您的權(quán)益,請及時聯(lián)系本站刪除。
換一批
延伸閱讀

9月2日消息,不造車的華為或?qū)⒋呱龈蟮莫毥谦F公司,隨著阿維塔和賽力斯的入局,華為引望愈發(fā)顯得引人矚目。

關(guān)鍵字: 阿維塔 塞力斯 華為

加利福尼亞州圣克拉拉縣2024年8月30日 /美通社/ -- 數(shù)字化轉(zhuǎn)型技術(shù)解決方案公司Trianz今天宣布,該公司與Amazon Web Services (AWS)簽訂了...

關(guān)鍵字: AWS AN BSP 數(shù)字化

倫敦2024年8月29日 /美通社/ -- 英國汽車技術(shù)公司SODA.Auto推出其旗艦產(chǎn)品SODA V,這是全球首款涵蓋汽車工程師從創(chuàng)意到認(rèn)證的所有需求的工具,可用于創(chuàng)建軟件定義汽車。 SODA V工具的開發(fā)耗時1.5...

關(guān)鍵字: 汽車 人工智能 智能驅(qū)動 BSP

北京2024年8月28日 /美通社/ -- 越來越多用戶希望企業(yè)業(yè)務(wù)能7×24不間斷運行,同時企業(yè)卻面臨越來越多業(yè)務(wù)中斷的風(fēng)險,如企業(yè)系統(tǒng)復(fù)雜性的增加,頻繁的功能更新和發(fā)布等。如何確保業(yè)務(wù)連續(xù)性,提升韌性,成...

關(guān)鍵字: 亞馬遜 解密 控制平面 BSP

8月30日消息,據(jù)媒體報道,騰訊和網(wǎng)易近期正在縮減他們對日本游戲市場的投資。

關(guān)鍵字: 騰訊 編碼器 CPU

8月28日消息,今天上午,2024中國國際大數(shù)據(jù)產(chǎn)業(yè)博覽會開幕式在貴陽舉行,華為董事、質(zhì)量流程IT總裁陶景文發(fā)表了演講。

關(guān)鍵字: 華為 12nm EDA 半導(dǎo)體

8月28日消息,在2024中國國際大數(shù)據(jù)產(chǎn)業(yè)博覽會上,華為常務(wù)董事、華為云CEO張平安發(fā)表演講稱,數(shù)字世界的話語權(quán)最終是由生態(tài)的繁榮決定的。

關(guān)鍵字: 華為 12nm 手機(jī) 衛(wèi)星通信

要點: 有效應(yīng)對環(huán)境變化,經(jīng)營業(yè)績穩(wěn)中有升 落實提質(zhì)增效舉措,毛利潤率延續(xù)升勢 戰(zhàn)略布局成效顯著,戰(zhàn)新業(yè)務(wù)引領(lǐng)增長 以科技創(chuàng)新為引領(lǐng),提升企業(yè)核心競爭力 堅持高質(zhì)量發(fā)展策略,塑強(qiáng)核心競爭優(yōu)勢...

關(guān)鍵字: 通信 BSP 電信運營商 數(shù)字經(jīng)濟(jì)

北京2024年8月27日 /美通社/ -- 8月21日,由中央廣播電視總臺與中國電影電視技術(shù)學(xué)會聯(lián)合牽頭組建的NVI技術(shù)創(chuàng)新聯(lián)盟在BIRTV2024超高清全產(chǎn)業(yè)鏈發(fā)展研討會上宣布正式成立。 活動現(xiàn)場 NVI技術(shù)創(chuàng)新聯(lián)...

關(guān)鍵字: VI 傳輸協(xié)議 音頻 BSP

北京2024年8月27日 /美通社/ -- 在8月23日舉辦的2024年長三角生態(tài)綠色一體化發(fā)展示范區(qū)聯(lián)合招商會上,軟通動力信息技術(shù)(集團(tuán))股份有限公司(以下簡稱"軟通動力")與長三角投資(上海)有限...

關(guān)鍵字: BSP 信息技術(shù)
關(guān)閉
關(guān)閉