頻率特性測試儀的設(shè)計(jì)
頻率特性是一個(gè)網(wǎng)絡(luò)性能最直觀的反映。頻率特性測試儀用于測量網(wǎng)絡(luò)的幅頻特性和相頻特性,是根據(jù)掃頻法的測量原理設(shè)計(jì),是一種快速、簡便、實(shí)時(shí)、動態(tài)、多參數(shù)、直觀的測量儀器,可廣泛應(yīng)用于電子工程等領(lǐng)域。由于模擬式掃頻儀價(jià)格昂貴,不能直接得到相頻特性,更不能打印網(wǎng)絡(luò)的頻率響應(yīng)曲線,給使用帶來諸多不便。為此,設(shè)計(jì)了低頻段數(shù)字式頻率特性測試儀。該測試儀采用數(shù)字直接頻率合成技術(shù)專用的集成電路AD985l產(chǎn)生掃頻信號,以單片機(jī)和FPGA為控制核心,通過A/D和D/A轉(zhuǎn)換器等接口電路,實(shí)現(xiàn)掃頻信號頻率的步進(jìn)調(diào)整、數(shù)字顯示及被測網(wǎng)絡(luò)幅頻特性與相頻特性的數(shù)顯等。該系統(tǒng)成本低廉,掃頻范圍較寬(10 Hz~1MHz),可方便地與打印機(jī)連接,實(shí)現(xiàn)頻率特性曲線的打印。
2 多功能計(jì)數(shù)器設(shè)計(jì)方案
2.1 幅頻和相頻特性測量方案
方案1:利用公式H(s)=R(s)/E(s),以沖擊函數(shù)為激勵,則輸出信號的拉氏變換與系統(tǒng)函數(shù)相等。但是產(chǎn)生性能很好的沖擊函數(shù)比較困難,需要對采集的數(shù)據(jù)做FFT變換,需要占用大量的硬件和軟件資源,且精度也受到限制。
方案2:掃頻測試法。當(dāng)系統(tǒng)在正弦信號的激勵下,穩(wěn)態(tài)時(shí),響應(yīng)信號與輸入激勵信號頻率相同,其幅值比即為該頻率的幅頻響應(yīng)值,而兩者的相位差即為相頻特性值。采用頻率逐點(diǎn)步進(jìn)的測試方法。無需對信號進(jìn)行時(shí)域與頻域的變換計(jì)算,通過對模擬量的測量與計(jì)算完成,且精度較高。
綜上所述,選擇方案2。
2.2 掃描信號產(chǎn)生方案
方案1:采用單片函數(shù)發(fā)生器。其頻率可由外圍電路控制。產(chǎn)生的信號頻率穩(wěn)定度低,抗干擾能力差,靈活性差。
方案2:采用數(shù)字鎖相環(huán)頻率合成技術(shù)。但鎖相環(huán)本身是一個(gè)惰性環(huán)節(jié),頻率轉(zhuǎn)換時(shí)間長,整個(gè)測試儀的反應(yīng)速度就會很慢,而且?guī)挷桓摺?br /> 方案3:采用數(shù)字直接頻率合成技術(shù)(DDFS)。以單片機(jī)和FPGA為控制核心,通過相位累加器的輸出尋址波形存儲器中的數(shù)據(jù),以產(chǎn)生固定頻率的正弦信號。該方案實(shí)現(xiàn)簡單,頻率穩(wěn)定,抗干擾能力強(qiáng)。
綜上分析,采用方案3。
2.3 幅度檢測方案
方案1:采用二極管峰值檢測電路。但是二極管的導(dǎo)通壓降會帶來較大誤差,小信號測量精度不高,而且模擬電路易受到外部的影響,穩(wěn)定性不高。
方案2:采用真有效值檢測器件。該方法電路簡單,精度高,穩(wěn)定性高。
綜上所述,采用方案2。
2.4 相位檢測方案
方案1:相位電壓轉(zhuǎn)換法。采用低通濾波法和積分法。低通濾波法的濾波環(huán)節(jié)和精度不高;積分法精度較高,但是對積分電路和放電回路的要求很高。
方案2:計(jì)數(shù)法。兩路信號經(jīng)整形異或后,所得的脈沖占空比能反映相位差的大小,由此測得其相位差。采用多周期同步計(jì)數(shù)法,可使量化誤差大大減小,精度很高。
綜上所述,選取方案2。
3 系統(tǒng)總體設(shè)計(jì)
該系統(tǒng)以單片機(jī)和FPGA為控制核心,用DDFS技術(shù)產(chǎn)生頻率掃描信號,采用真有效值檢測器件AD637測量信號幅度。在FPGA中,采用高頻脈沖計(jì)數(shù)的方法測量相位差,經(jīng)過單片機(jī)運(yùn)算,可得到100 Hz~100 kHz中任意頻率的幅頻特性和相頻特性數(shù)據(jù),實(shí)現(xiàn)在該頻段的自動掃描,并在示波器上同時(shí)顯示幅頻和相頻特性曲線。用鍵盤控制系統(tǒng)實(shí)現(xiàn)各種功能,并且在LCD同步顯示相應(yīng)的功能和數(shù)據(jù),人機(jī)交互界面友好。圖1給出系統(tǒng)總體設(shè)計(jì)框圖。
4 理論分析與計(jì)算
4.1 掃頻測試法理論依據(jù)
設(shè)頻率響應(yīng)為H(jω)的實(shí)系數(shù)線性時(shí),不變系統(tǒng)在信號x(n)_Acos(ω0n+f)激勵下的穩(wěn)態(tài)輸出為y(n)。利用三角恒等式,可將輸入表示為2個(gè)復(fù)指數(shù)函數(shù)之和:
因此,輸出信號和輸入信號是頻率相同的正弦波,僅有兩點(diǎn)不同:第一,振幅被|H(ejω)|加權(quán),即網(wǎng)絡(luò)系統(tǒng)在ω=ω0的幅度函數(shù)值;第二,輸出信號相對于輸入信號有一個(gè)數(shù)量為q(ω0)的相位時(shí)延,即網(wǎng)絡(luò)系統(tǒng)在ω=ω0的相位值。
4.2 DDS信號源
根據(jù)DDFS原理所產(chǎn)生的波形頻率為:
式中fclk為基準(zhǔn)頻率,M為相位增量因子,N為累加器的位數(shù)。M取22,N取24。
為得到100 kHz的信號,而且在每個(gè)周期希望取到32個(gè)以上點(diǎn),則累加器輸出后級D/A轉(zhuǎn)換需要至少3.2 MHz的速度,于是選取建立時(shí)間為30 ns、10位的DAC900,不僅滿足了對D/A轉(zhuǎn)換速度的要求,而且具有10位數(shù)據(jù)線,減少了D/A轉(zhuǎn)換中固有的量化誤差。fclk取40MHz,頻率的最小步進(jìn):
4.3 相位差測量
設(shè)INl和IN2為兩路具有相位差經(jīng)整形后得到的方波信號,Gate2為INl和IN2經(jīng)過異或后得到的脈沖信號,F(xiàn)o為FPGA內(nèi)部的標(biāo)準(zhǔn)高頻脈沖信號,取40MHz。將IN2八分頻,結(jié)合單片機(jī)控制,可得到一個(gè)動態(tài)門控信號Gatel。動態(tài)門控與脈沖信號相“與”,可得到門限內(nèi)的有限個(gè)脈沖信號Gate2。Gate1中含有IN2的4個(gè)周期,Gate2含有8個(gè)異或脈沖。其中分別對clk進(jìn)行計(jì)數(shù),分別得到計(jì)數(shù)值M和N。根據(jù)公式精確地測得相位差絕對值。其時(shí)序如圖2所示。由于對高頻脈沖計(jì)數(shù)可能存在±1的誤差:
在F=100kHz時(shí),Mmin≈1600,則δmax(△ψ)≈0.9°
FPGA內(nèi)部生成一個(gè)D觸發(fā)器,以INl為觸發(fā)器的數(shù)據(jù)輸入,IN2為觸發(fā)器的時(shí)鐘輸入,若觸發(fā)器輸出端為高電平,則△ψ>O°;若輸出端為低電平,則△ψ<0°。
5 主要功能電路
5.1 有效值檢測模塊
采用高精度、高帶寬的真有效值檢測器件AD637。輸出直流約有0.1 V的波紋.對小信號的測量存在很大誤差。系統(tǒng)有效值檢測模塊后接一級截止頻率為10 Hz的低通濾波器,濾除直流信號的波紋。即使在最小的有效值,檢測幾乎沒有誤差。如圖3所示。
5.2 示波器顯示模塊
為了在示波器上顯示曲線,需要通過2個(gè)D/A轉(zhuǎn)換器向X、Y軸同步送入掃描信號和數(shù)據(jù)信號。選用DAC0800作為數(shù)模轉(zhuǎn)換器,由于掃描信號為0~5 V的鋸齒波信號,而數(shù)據(jù)信號為一5~5 V,掃描信號和數(shù)據(jù)信號的D/A轉(zhuǎn)換器分別采用單極性和雙極性接法。圖4給出DAC0800雙極性接法電路,單極性接法只將R1短路即可。
6 系統(tǒng)軟件設(shè)計(jì)
系統(tǒng)軟件部分由單片機(jī)和FPGA組成,單片機(jī)主要完成人機(jī)交互部分的處理和系統(tǒng)的控制,FPGA主要完成測相和RAM的實(shí)現(xiàn)。整個(gè)軟件系統(tǒng)的設(shè)計(jì)中模塊化思想貫穿始終,采用菜單選擇所用功能。圖5為程序流程圖。
7 結(jié)語
頻率特性測試儀的幅度特性測試的頻率范圍達(dá)100 Hz~100 kHz,頻率穩(wěn)定度10-6,測量精度5%,能在全頻范圍和特定頻率范圍內(nèi)自動步進(jìn)測量,可手動預(yù)置測量范圍及步進(jìn)頻率值。相頻特性測試的頻率范圍500 Hz~lO kHz,相位值顯示3位,以1位作為符號位,測量精度為l°,并能用示波器顯示幅頻特性和相頻特性曲線。該系統(tǒng)操作簡單,測量精度很高,具有可行性和實(shí)用性,其成品經(jīng)優(yōu)化包裝具有良好市場。