什么是FPGA的開發(fā)流程?FPGA的設(shè)計主要包括硬件設(shè)計和軟件設(shè)計兩部分。而FPGA的設(shè)計流程就是利用EDA開發(fā)軟件和編程工具對FPGA芯片進行開發(fā)的過程。FPGA的開發(fā)流程,需要注意哪些事項?我們一起去了解下具體內(nèi)容吧!
典型FPGA開發(fā)流程與注意事項
典型FPGA的開發(fā)流程一般如圖所示,包括功能定義/器件選型、設(shè)計輸入、功能仿真、綜合優(yōu)化、綜合后仿真、實現(xiàn)、布線后仿真、板級仿真以及芯片編程與調(diào)試等主要步驟。
1、功能定義/器件選型
在FPGA設(shè)計項目開始之前,必須有系統(tǒng)功能的定義和模塊的劃分,另外就是要根據(jù)任務(wù)要求,如系統(tǒng)的功能和復(fù)雜度,對工作速度和器件本身的資源、成本、以及連線的可布性等方面進行權(quán)衡,選擇合適的設(shè)計方案和合適的器件類型。
一般都采用自頂向下的設(shè)計方法,把系統(tǒng)分成若干個基本單元,然后再把每個基本單元劃分為下一層次的基本單元,一直這樣做下去,直到可以直接使用EDA元件庫為止。
2、設(shè)計輸入
設(shè)計輸入是將所設(shè)計的系統(tǒng)或電路以開發(fā)軟件要求的某種形式表示出來,并輸入給EDA工具的過程。常用的方法有硬件描述語言(HDL)和原理圖輸入方法等。
原理圖輸入方式是一種最直接的描述方式,在可編程芯片發(fā)展的早期應(yīng)用比較廣泛,它將所需的器件從元件庫中調(diào)出來,畫出原理圖。這種方法雖然直觀并易于仿真,但效率很低,且不易維護,不利于模塊構(gòu)造和重用。更主要的缺點是可移植性差,當(dāng)芯片升級后,所有的原理圖都需要作一定的改動。
目前,在實際開發(fā)中應(yīng)用最廣的就是HDL語言輸入法,利用文本描述設(shè)計,可以分為普通HDL和行為HDL。普通HDL有ABEL、CUR等,支持邏輯方程、真值表和狀態(tài)機等表達方式,主要用于簡單的小型設(shè)計。
而在中大型工程中,主要使用行為HDL,其主流語言是Verilog HDL和VHDL。這兩種語言都是美國電氣與電子工程師協(xié)會(IEEE)的標準,其共同的突出特點有:語言與芯片工藝無關(guān),利于自頂向下設(shè)計,便于模塊的劃分與移植,可移植性好,具有很強的邏輯描述和仿真功能,而且輸入效率很高。 除了這IEEE標準語言外,還有廠商自己的語言。也可以用HDL為主,原理圖為輔的混合設(shè)計方式,以發(fā)揮兩者的各自特色。
3、功能仿真
功能仿真也稱為前仿真是在編譯之前對用戶所設(shè)計的電路進行邏輯功能驗證,此時的仿真沒有延遲信息,僅對初步的功能進行檢測。
仿真前,要先利用波形編輯器和HDL等建立波形文件和測試向量(即將所關(guān)心的輸入信號組合成序列),仿真結(jié)果將會生成報告文件和輸出信號波形,從中便可以觀察各個節(jié)點信號的變化。如果發(fā)現(xiàn)錯誤,則返回設(shè)計修改邏輯設(shè)計。
常用的工具有Model Tech公司的ModelSim、Sysnopsys公司的VCS和Cadence公司的NC-Verilog以及NC-VHDL等軟件。
4、 綜合優(yōu)化
所謂綜合就是將較高級抽象層次的描述轉(zhuǎn)化成較低層次的描述。綜合優(yōu)化根據(jù)目標與要求優(yōu)化所生成的邏輯連接,使層次設(shè)計平面化,供FPGA布局布線軟件進行實現(xiàn)。
就目前的層次來看,綜合優(yōu)化(Synthesis)是指將設(shè)計輸入編譯成由與門、或門、非門、RAM、觸發(fā)器等基本邏輯單元組成的邏輯連接網(wǎng)表,而并非真實的門級電路。
真實具體的門級電路需要利用FPGA制造商的布局布線功能,根據(jù)綜合后生成的標準門級結(jié)構(gòu)網(wǎng)表來產(chǎn)生。
為了能轉(zhuǎn)換成標準的門級結(jié)構(gòu)網(wǎng)表,HDL程序的編寫必須符合特定綜合器所要求的風(fēng)格。由于門級結(jié)構(gòu)、RTL級的HDL程序的綜合是很成熟的技術(shù),所有的綜合器都可以支持到這一級別的綜合。
5、綜合后仿真
綜合后仿真檢查綜合結(jié)果是否和原設(shè)計一致。在仿真時,把綜合生成的標準延時文件反標注到綜合仿真模型中去,可估計門延時帶來的影響。
但這一步驟不能估計線延時,因此和布線后的實際情況還有一定的差距,并不十分準確。
目前的綜合工具較為成熟,對于一般的設(shè)計可以省略這一步,但如果在布局布線后發(fā)現(xiàn)電路結(jié)構(gòu)和設(shè)計意圖不符,則需要回溯到綜合后仿真來確認問題之所在。在功能仿真中介紹的軟件工具一般都支持綜合后仿真。
6、實現(xiàn)與布局布線
布局布線可理解為利用實現(xiàn)工具把邏輯映射到目標器件結(jié)構(gòu)的資源中,決定邏輯的最佳布局,選擇邏輯與輸入輸出功能鏈接的布線通道進行連線,并產(chǎn)生相應(yīng)文件(如配置文件與相關(guān)報告),實現(xiàn)是將綜合生成的邏輯網(wǎng)表配置到具體的FPGA芯片上,布局布線是其中最重要的過程。
布局將邏輯網(wǎng)表中的硬件原語和底層單元合理地配置到芯片內(nèi)部的固有硬件結(jié)構(gòu)上,并且往往需要在速度最優(yōu)和面積最優(yōu)之間作出選擇。布線根據(jù)布局的拓撲結(jié)構(gòu),利用芯片內(nèi)部的各種連線資源,合理正確地連接各個元件。
目前,F(xiàn)PGA的結(jié)構(gòu)非常復(fù)雜,特別是在有時序約束條件時,需要利用時序驅(qū)動的引擎進行布局布線。布線結(jié)束后,軟件工具會自動生成報告,提供有關(guān)設(shè)計中各部分資源的使用情況。由于只有FPGA芯片生產(chǎn)商對芯片結(jié)構(gòu)最為了解,所以布局布線必須選擇芯片開發(fā)商提供的工具。
7、 時序仿真
時序仿真,也稱為后仿真,是指將布局布線的延時信息反標注到設(shè)計網(wǎng)表中來檢測有無時序違規(guī)(即不滿足時序約束條件或器件固有的時序規(guī)則,如建立時間、保持時間等)現(xiàn)象。
時序仿真包含的延遲信息最全,也最精確,能較好地反映芯片的實際工作情況。由于不同芯片的內(nèi)部延時不一樣,不同的布局布線方案也給延時帶來不同的影響。
因此在布局布線后,通過對系統(tǒng)和各個模塊進行時序仿真,分析其時序關(guān)系,估計系統(tǒng)性能,以及檢查和消除競爭冒險是非常有必要的。在功能仿真中介紹的軟件工具一般都支持綜合后仿真。
8、板級仿真與驗證
板級仿真主要應(yīng)用于高速電路設(shè)計中,對高速系統(tǒng)的信號完整性、電磁干擾等特征進行分析,一般都以第三方工具進行仿真和驗證。
9、芯片編程與調(diào)試
設(shè)計的最后一步就是芯片編程與調(diào)試。芯片編程是指產(chǎn)生使用的數(shù)據(jù)文件(位數(shù)據(jù)流文件,Bitstream GeneraTIon),然后將編程數(shù)據(jù)下載到FPGA芯片中。其中,芯片編程需要滿足一定的條件,如編程電壓、編程時序和編程算法等方面。
邏輯分析儀(Logic Analyzer,LA)是FPGA設(shè)計的主要調(diào)試工具,但需要引出大量的測試管腳,且LA價格昂貴。目前,主流的FPGA芯片生產(chǎn)商都提供了內(nèi)嵌的在線邏輯分析儀(如Xilinx ISE中的ChipScope)來解決上述矛盾,它們只需要占用芯片少量的邏輯資源,具有很高的實用價值。以上就是FPGA的開發(fā)流程,希望能給大家?guī)椭?