人工智能下的類(lèi)腦計(jì)算怎么樣
深度學(xué)習(xí)正遍地開(kāi)花,但它可能并非人工智能的終極方案。無(wú)論是學(xué)術(shù)界還是產(chǎn)業(yè)界,都在思考人工智能的下一步發(fā)展路徑:類(lèi)腦計(jì)算已悄然成為備受關(guān)注的“種子選手”之一。
12月16日至17日,由北京未來(lái)芯片技術(shù)高精尖創(chuàng)新中心及清華大學(xué)微電子學(xué)研究所聯(lián)合主辦的“北京高精尖論壇暨2019未來(lái)芯片論壇”在清華大學(xué)舉行,這次論壇上,類(lèi)腦計(jì)算成為多位權(quán)威專(zhuān)家熱議的人工智能研究方向。
人工智能浪潮下的洋流
類(lèi)腦計(jì)算又被稱(chēng)為神經(jīng)形態(tài)計(jì)算(Neuromorphic Computing)。它不僅是學(xué)術(shù)會(huì)議關(guān)注的新熱點(diǎn),產(chǎn)業(yè)界也在探索之中。
11月中旬,英特爾官網(wǎng)宣布了一則消息:埃森哲、空中客車(chē)、通用電氣和日立公司加入英特爾神經(jīng)形態(tài)研究共同體(INRC),該共同體目前已擁有超過(guò)75個(gè)成員機(jī)構(gòu)。
如果說(shuō),當(dāng)下人工智能發(fā)展浪潮正波濤洶涌的話,類(lèi)腦計(jì)算就是浪潮之下的洋流。雖不太引人注意,未來(lái)卻有可能改變?nèi)斯ぶ悄馨l(fā)展趨勢(shì)。
原因之一是,深度學(xué)習(xí)雖在語(yǔ)音識(shí)別、圖像識(shí)別、自然語(yǔ)言理解等領(lǐng)域取得很大突破,并被廣泛應(yīng)用,但它需要大量的算力支撐,功耗也很高。
“我們希望智能駕駛汽車(chē)的駕駛水平像司機(jī)一樣,但現(xiàn)在顯然還達(dá)不到。因?yàn)樗鼘?duì)信息的智能判斷和分析不夠,功耗也非常高?!鼻迦A大學(xué)微納電子系教授吳華強(qiáng)告訴科技日?qǐng)?bào)記者,人工智能算法訓(xùn)練中心在執(zhí)行任務(wù)時(shí)動(dòng)輒消耗電量幾萬(wàn)瓦甚至幾十萬(wàn)瓦,而人的大腦耗能卻僅相當(dāng)于20瓦左右。
北京大學(xué)計(jì)算機(jī)科學(xué)技術(shù)系教授黃鐵軍也舉了一個(gè)生動(dòng)的例子:市場(chǎng)上應(yīng)用深度學(xué)習(xí)技術(shù)的智能無(wú)人機(jī)已經(jīng)十分靈巧,但從智能程度上看,卻與一只蒼蠅或蜻蜓相差甚遠(yuǎn),盡管體積和功耗比后者高很多。
追求模擬大腦的功能
到底什么是類(lèi)腦計(jì)算,它又憑什么贏得學(xué)術(shù)界和產(chǎn)業(yè)界的寵愛(ài)?
“類(lèi)腦計(jì)算從結(jié)構(gòu)上追求設(shè)計(jì)出像生物神經(jīng)網(wǎng)絡(luò)那樣的系統(tǒng),從功能上追求模擬大腦的功能,從性能上追求大幅度超越生物大腦,也稱(chēng)神經(jīng)形態(tài)計(jì)算?!秉S鐵軍接受科技日?qǐng)?bào)記者采訪時(shí)說(shuō)。
類(lèi)腦計(jì)算試圖模擬生物神經(jīng)網(wǎng)絡(luò)的結(jié)構(gòu)和信息加工過(guò)程。它在軟件層面的嘗試之一是脈沖神經(jīng)網(wǎng)絡(luò)(SNN)。
現(xiàn)在深度學(xué)習(xí)一般通過(guò)卷積神經(jīng)網(wǎng)絡(luò)(CNN)或遞歸神經(jīng)網(wǎng)絡(luò)(RNN)來(lái)實(shí)現(xiàn)?!癈NN和RNN都屬于人工神經(jīng)網(wǎng)絡(luò),其中的人工神經(jīng)元,至今仍在使用上世紀(jì)40年代時(shí)的模型?!秉S鐵軍說(shuō),雖然現(xiàn)在設(shè)計(jì)出的人工神經(jīng)網(wǎng)絡(luò)越來(lái)越大,也越來(lái)越復(fù)雜,但從根本上講,其神經(jīng)元模型沒(méi)有太大改進(jìn)。
另一方面,在深度學(xué)習(xí)人工神經(jīng)網(wǎng)絡(luò)中,神經(jīng)元之間的連接被稱(chēng)為權(quán)值。它們是人工神經(jīng)網(wǎng)絡(luò)的關(guān)鍵要素。
而在脈沖神經(jīng)網(wǎng)絡(luò)中,神經(jīng)元之間卻是神經(jīng)脈沖,信息的表達(dá)和處理通過(guò)神經(jīng)脈沖發(fā)送來(lái)實(shí)現(xiàn)。就像我們的大腦中,有大量神經(jīng)脈沖在傳遞和流轉(zhuǎn)。
黃鐵軍告訴記者,由于神經(jīng)脈沖在不停地傳遞和流轉(zhuǎn),脈沖神經(jīng)網(wǎng)絡(luò)在表達(dá)和處理信息時(shí),比深度學(xué)習(xí)的時(shí)間性更突出,更加適合進(jìn)行高效的時(shí)空信息處理。
推廣應(yīng)用可能不需太久
也有人從硬件層面去實(shí)現(xiàn)類(lèi)腦計(jì)算,比如神經(jīng)形態(tài)芯片。
2019年7月,英特爾發(fā)布消息稱(chēng),其神經(jīng)形態(tài)研究芯片Loihi執(zhí)行專(zhuān)用任務(wù)的速度可比普通CPU快1000倍,效率高10000倍。
“在對(duì)信息的編碼、傳輸和處理方面,我們希望從大腦機(jī)制中獲得啟發(fā),將這些想法應(yīng)用到芯片技術(shù)上,讓芯片的處理速度更快、水平更高、功耗更低。”吳華強(qiáng)也在進(jìn)行神經(jīng)形態(tài)芯片相關(guān)研究,他告訴科技日?qǐng)?bào)記者。
吳華強(qiáng)介紹,在傳統(tǒng)的馮·諾依曼架構(gòu)中,信息的處理和存儲(chǔ)是分開(kāi)的,而人的大腦在處理信息時(shí),存儲(chǔ)和處理是融為一體的。
“所以我們?cè)趪L試研發(fā)存算一體化的芯片,希望通過(guò)避免芯片內(nèi)部不停地搬運(yùn)數(shù)據(jù),來(lái)大幅提高芯片的能效比?!眳侨A強(qiáng)說(shuō),他的團(tuán)隊(duì)現(xiàn)在也已研發(fā)出存算一體的樣品芯片。
談到類(lèi)腦計(jì)算的進(jìn)展,黃鐵軍告訴記者,目前類(lèi)腦計(jì)算仍在摸索階段,還缺乏典型的成功應(yīng)用。但商業(yè)公司已經(jīng)嗅到味道,相關(guān)技術(shù)獲得規(guī)模性應(yīng)用可能不需要太長(zhǎng)時(shí)間。
“現(xiàn)在的神經(jīng)形態(tài)計(jì)算還比較初步,它的發(fā)展水平跟現(xiàn)有主流人工智能算法相比,還存在一定差距?!敝锌圃鹤詣?dòng)化所研究員張兆翔接受科技日?qǐng)?bào)記者采訪時(shí)認(rèn)為,但作為一種新的探索方式,應(yīng)該繼續(xù)堅(jiān)持,因?yàn)樗赡芫褪俏磥?lái)人工智能技術(shù)發(fā)展的重要突破口。