毫無疑問,無人機應用正在成為工業(yè)4.0的一個組成部分。當無人機與人工智能相結合,無論是在繁忙的施工現(xiàn)場、壯觀的太陽能陣列上空,還是在一望無際的農場、鯊魚出沒的海灘,兩者不斷為人類管理者提供全新的視覺。
這種視覺讓我們有能力看得更廣、更清晰、更深入,而當無人機采集的圖像轉化為大型數據集,并結合強大的分析軟件,則為我們提供了的數據采集、分析、管理、維護與預測能力。
隨著無人機技術的不斷發(fā)展和普及,用于維護、測量、測繪和監(jiān)測等各種任務的高分辨率圖像的可用性正在增加。作為人工智能在無人機行業(yè)中重要的應用目標之一,有效利用無人機收集的大型數據集則意味著可對數據集以自動化方式進行處理。
在目前,市場上已經有許多成熟的軟件公司為用戶提供基于人工智能的數據分析解決方案,使非結構化無人機數據“可操作”并獲得有價值的分析結果,而無需耗時的手動分析。
1.實踐中的智能分析從農業(yè)到建筑,從能源到安全/安防,深度學習或機器學習算法的使用已經涵蓋了無人機應用的許多垂直領域。
例如,在2017年底,Pix4D已經開始使用機器學習算法進行多種攝影測量應用,將3D點云分類為建筑物,道路或植被等類別,而現(xiàn)在已經可以使用各種智能工具來計算樹木數量并確定它們的高度和種類,甚至可以使用這些工具來確定道路、建筑物或植被表面計數,還可以計算停車場中的汽車數量,或一定區(qū)域中適合安裝太陽能電池的屋頂。
Pix4D還與Hummingbird合作開發(fā)了一款軟件,幫助農場經理和農藝師解決那些導致生產力受到嚴重破壞的作物和植物病害問題。他們將特定的機器學習功能添加到強大的算法中,以發(fā)現(xiàn)和破譯隱藏的模式,從而幫助客戶實現(xiàn)更準確的診斷和針對性處理。
Ardenna公司正在利用圖像處理和人工智能進行自動檢測,對鐵路和風力渦輪機檢查過程中發(fā)現(xiàn)的異常情況進行分類和報告。在無人機進行鐵路檢查后,他們收集了來自100英里鐵軌的大約40,000張圖像,而該公司的軟件可以自動檢測30種不同類型的異常,處理時間不到5小時。
Skycatch的系統(tǒng)則可以在施工現(xiàn)場執(zhí)行自動化任務,通過深度學習模型識別和跟蹤施工現(xiàn)場的資產和物料交付。像這樣的實時跟蹤可以用于預測項目延遲,而隨著時間的推移,該系統(tǒng)可以學習如何防止這種延遲,以幫助建筑公司節(jié)省大量資金。
在2017年美國發(fā)生哈維颶風災害后,EagleView Technologies使用機器學習算法來創(chuàng)建房產分析數據。這種方法使得保險公司可以分析無人機圖像并有效地對損害進行分類,這對于在颶風后快速處理大量索賠起到了非常重要的作用。
澳大利亞的Westpac集團推出了世界自動化鯊魚監(jiān)測無人機系統(tǒng)Shark Spotter,該系統(tǒng)基于復雜的深度學習框架開發(fā)了一種算法,可通過配備物體識別功能的無人機來實時檢測和識別水中鯊魚的出沒跡象,并快速應對海灘附近的鯊魚潛在威脅。
美國公司Nanonets可為其他企業(yè)或軟件開發(fā)商在構建機器學習模型方面提供支持。所有客戶需要做的是向他們發(fā)送一些樣本,以便模型可以從中學習,例如檢查太陽能電廠或計算圖像中的某種物體。
Nearthlab是一家韓國軟件公司,目前正在開發(fā)一種解決方案,可以自動檢測并報告照片中風力渦輪機葉片的損壞情況。通過應用此技術,客戶可以快速識別損壞,并在需要時啟動相關措施。
普華永道英國是全球首家使用無人機進行庫存盤點審計的公司。公司用無人機拍攝英國后一家燃煤電站之一的燃煤儲量,并將其拍攝的圖像用于創(chuàng)建點云“數字孿生”模型,以測量煤堆的體積。據測量結果,準確率超過99%。
2.人工智能的加速應用根據DRONEII近對無人機數據分析軟件開發(fā)商的一項調查,無人機及相關的人工智能分析技術已經在能源、安全/安防、建筑、礦業(yè)、油氣開采、物流、農業(yè)、保險、地產、交通等多個行業(yè)都得到了廣泛應用。
根據調查數據,大多數公司都致力于為能源行業(yè)開發(fā)用于數據分析的無人機軟件,可見該行業(yè)無人機應用的廣闊前景。
許多受訪者表示,使用數據分析軟件不僅可以實現(xiàn)工業(yè)資產的可視化,還可以識別和管理維護問題或異常狀況。
受訪企業(yè)參與的第二大應用行業(yè)是建筑業(yè)。其中,大多數應用涉及監(jiān)測施工現(xiàn)場的變化或庫存量的測量。
在礦業(yè),采石和石油/天然氣開采行業(yè),無人機軟件工具主要用于監(jiān)控站點進度,測繪整個采礦站點的數據,或計算采掘量。
調查還顯示,37%的受訪者僅使用人工智能算法,而63%的受訪者仍然信賴結合了機器學習或深度學習方法的傳統(tǒng)計算機視覺軟件。此外,沒有一家無人機數據分析服務商表示其既不使用機器學習也不使用深度學習算法。
在僅使用AI驅動軟件的公司中,50%的公司同時采用了深度學習和機器學習算法,30%只使用機器學習算法,而20%只使用深度學習算法。
在目前,雖然大多數無人機數據分析公司仍在使用傳統(tǒng)方法處理從無人機獲取的數據,但是所有參與者對是否部署人工智能工具做出積極回應的事實再次表明人工智能對無人機行業(yè)越來越重要。
DRONEII認為,人工智能還不是所有大數據分析問題的解決方案。人工智能技術(機器學習或深度學習)及其結果僅與用于構建分類模型的訓練數據表現(xiàn)得一樣好。
DRONEII預測,進一步利用和開發(fā)這些強大的智能數據處理工具將大大減少大數據的處理時間,而這正是目前的一個巨大挑戰(zhàn)。
此外,雖然目前更多的軟件開發(fā)人員聚焦于能源,建筑,采礦和采石業(yè)等更為成熟的行業(yè),但在未來,保險,農業(yè),房地產和物流運輸等行業(yè)都將越來越多地尋求無人機相關分析軟件的幫助。
來源:安防展覽網