當前位置:首頁 > 醫(yī)療電子 > 醫(yī)療電子技術(shù)文庫
[導(dǎo)讀] 人工智能(AI)正越來越多地應(yīng)用于制藥和醫(yī)療器械行業(yè),它有望提高產(chǎn)品開發(fā)的效率,為延長患者生命提供創(chuàng)新的解決方案。然而,這一新興領(lǐng)域?qū)ΜF(xiàn)有監(jiān)管系統(tǒng)提出挑戰(zhàn)。因此,利益相關(guān)者必須通過合作,確保監(jiān)

人工智能(AI)正越來越多地應(yīng)用于制藥和醫(yī)療器械行業(yè),它有望提高產(chǎn)品開發(fā)的效率,為延長患者生命提供創(chuàng)新的解決方案。然而,這一新興領(lǐng)域?qū)ΜF(xiàn)有監(jiān)管系統(tǒng)提出挑戰(zhàn)。因此,利益相關(guān)者必須通過合作,確保監(jiān)管體系的順利發(fā)展,以適應(yīng)人工智能帶來的變化。

動脈網(wǎng)編譯了PharmaLex的相關(guān)報告。本文主要內(nèi)容包括:

四大機遇:AI有望改善醫(yī)療產(chǎn)品的研發(fā)和生命周期管理

1.使用AI工具評估臨床試驗的納入/排除標準;

2.在II期臨床試驗中使用人工智能識別臨床活動;

3.從非結(jié)構(gòu)化文本中提取數(shù)據(jù);

4.自動化行政工作。

四大挑戰(zhàn):人工智能深入臨床面臨著監(jiān)管挑戰(zhàn)

1.如何驗證不斷“學(xué)習”的AI軟件;

2.如何評估從新的基于AI的臨床端點發(fā)出的安全信號;

3.如何審查使用AI的醫(yī)療技術(shù);

4.人工智能系統(tǒng)需要數(shù)據(jù)——誰擁有患者的數(shù)據(jù)?

四大機遇:AI有望改善醫(yī)療產(chǎn)品的研發(fā)和生命周期管理

機遇1:使用AI工具評估臨床試驗的納入/排除標準

在臨床試驗中,人工智能可用于評估與影像學(xué)或組織病理學(xué)相關(guān)的納入和排除標準。因為第一批使用人工智能技術(shù)的診斷工具已經(jīng)進入市場,所以這種應(yīng)用是意料之中的。有了這些工具,對已有納入/排除標準的評估過程將會變得更快,同時成本也會隨著標準化程度的提高而降低。

對于低收入到中等收入國家來說,AI工具特別重要。當需要通過血液或組織等生物樣本診斷疾病時,這些國家通常缺乏本國專家來評估生物樣本。AI工具可以有效簡化這一過程,幫助研究人員在當?shù)剡M行樣本評估,而不需要復(fù)雜且耗時的跨國運輸。

機遇2:在II期臨床試驗中使用人工智能識別臨床活動

利用人工智能評估新藥的臨床療效可以降低成本、加快臨床研發(fā)、盡早為患者帶來新療法,比如在II期試驗中評估CT掃描或MRI掃描的成像端點?;谌斯ぶ悄艿乃惴梢詢?yōu)化成像結(jié)果的讀取和評估,減少閱讀器之間和內(nèi)部的可變性,從而提高測量的靈敏度和特異性。如果這一工作不再需要放射科醫(yī)生,那么可以有效地加快測量過程并降低成本。

另一個應(yīng)用是開發(fā)新的臨床試驗終點,因為人工智能算法可以幫助減少試驗患者數(shù)量。

例如,帕金森病患者可以在手腕上佩戴加速度計,就像健身追蹤器一樣。該加速度計將提供患者運動障礙及其隨時間變化的連續(xù)數(shù)據(jù),然后人工智能算法對這些數(shù)據(jù)進行評估,以區(qū)分患者是處于ON狀態(tài)還是OFF狀態(tài),從而記錄藥物是否能起到改善病情的作用。

與患者日記或帕金森病綜合評分量表(UPDRS)相比,這種評估方法可以極大降低可變性,因為UPDRS量表無法測量ON和OFF狀態(tài)的確切時間。如果確認了臨床終點,降低的變異性可能有助于招募更少的II期患者,以確定一種新藥的治療效果。

圖1是關(guān)于帕金森病的一項臨床研究,該研究與樣本量以及是否持續(xù)監(jiān)測有關(guān)。根據(jù)目前的UPDRS-III量表,在12個月的時間內(nèi),與患者日記等標準護理相比,超過300名患者(每只手臂150名患者)需要檢測到疾病進展的放緩幅度大于40%。通過使用加速度計進行持續(xù)監(jiān)測,大約有80名患者(每只手臂40名患者)達到預(yù)期結(jié)果的80%。

這使得之前假設(shè)的端點可變性,與UPRS-III相比,需要除以4。這種方差的降低是很有可能的,因為UPDRS-III量表與極端的變異性有關(guān),在一年的時間內(nèi)只能評估幾次,例如四到六次,因為它需要患者去醫(yī)院接受檢測,并在沒有服用左旋多巴(L-dopa)的情況下進行評估。

通過連續(xù)而不是交錯的評估,從而提高運動活動的個別軌跡。而減少樣本量會使研究成本更低,執(zhí)行速度更快。

研究人員預(yù)計這種技術(shù)進步將對II期臨床試驗產(chǎn)生最大影響,因為III期臨床試驗需要足夠多的患者來準確評估新產(chǎn)品的安全性,并在更大的樣本容量中驗證II期臨床試驗結(jié)果。

此外,在任何新的臨床終點可以作為常規(guī)的替代終點證明臨床效益之前,都需要經(jīng)過大量的驗證過程。

機遇3:從非結(jié)構(gòu)化文本中提取數(shù)據(jù)

我們可以從衛(wèi)生局、醫(yī)療保健公司和互聯(lián)網(wǎng)的非結(jié)構(gòu)化文本中獲得有價值的信息。其中包括關(guān)于智能監(jiān)管等相對復(fù)雜的信息,但也有簡單的數(shù)據(jù),一旦這些數(shù)據(jù)被提取并轉(zhuǎn)移到數(shù)據(jù)庫中,研究人員就可以很容易地對其進行評估。

使用自然語言處理(NLP)進行文本挖掘的新工具為從文檔中提取信息和數(shù)據(jù)以及隨后自動上載到數(shù)據(jù)庫中進行分析提供了新的可能性?,F(xiàn)在已經(jīng)有了基于人工智能的工具,可以從非結(jié)構(gòu)化文本(如產(chǎn)品特性摘要)中提取數(shù)據(jù)來識別藥品(IDMP)(如物質(zhì)名稱或強度)(見圖2)。

文本挖掘工具讓衛(wèi)生當局以及制藥公司能夠更好地制作化學(xué)成分生產(chǎn)和控制(CMC)的文檔和指南。這些工具幫助衛(wèi)生局通過不同應(yīng)用程序和營銷授權(quán)來評估文檔。

比如在生產(chǎn)過程中發(fā)現(xiàn)產(chǎn)品有相同的化學(xué)雜質(zhì)或者尋找一種用于制造新生物實體的特定原材料。這將幫助衛(wèi)生局的審查人員改進其決策的制定,與此同時,幫助制藥公司從衛(wèi)生當局的規(guī)定中自動提取信息并將其導(dǎo)入智能監(jiān)管系統(tǒng)。

而這兩項任務(wù),都需要能夠理解CMC文檔的NLP軟件。該軟件需要訪問大量數(shù)據(jù),才能快速、高效、高質(zhì)量地實現(xiàn)預(yù)期結(jié)果,給衛(wèi)生當局以及行業(yè)利益相關(guān)者帶來最大的利益。

機遇4:自動化行政工作

衛(wèi)生當局和醫(yī)務(wù)工作者管理著大量的行政工作,而機器人流程自動化(RPA)和機器學(xué)習(ML)可以幫助他們減輕工作負擔。

例如,一項對監(jiān)管優(yōu)化組織(ROG)的審查顯示,在歐盟,約有400名全職員工受雇于有關(guān)當局及行業(yè),負責管理IA型變異。

在人工智能聯(lián)盟會議上,參會人員就AI/RPA如何幫助自動化處理IA型變異進行了討論,前提是有關(guān)企業(yè)可以在沒有授權(quán)批準的情況下實施,但需要在特定時間告知衛(wèi)生當局這一情況。

人工智能在這方面的一個應(yīng)用是從掃描文件(如登記證或貿(mào)易登記冊副本)中智能提取信息,并使用“SPOR”標準將這些信息轉(zhuǎn)移到數(shù)據(jù)庫中,包括實體、產(chǎn)品、組織和參考數(shù)據(jù)(詳見圖3)。這種技術(shù)已經(jīng)用于發(fā)票的自動處理,其中發(fā)票上的數(shù)據(jù)可以被提取到ERP系統(tǒng)中。

注:光學(xué)字符識別(OCR)將文本和圖形從(掃描)圖像轉(zhuǎn)換為機器可讀數(shù)據(jù)/文本

1.CTD文檔應(yīng)該是可搜索的PDF格式,但是確認文檔或付款證明需要OCR;

2.文本挖掘通過使用NLP將非結(jié)構(gòu)化信息從文本轉(zhuǎn)換為結(jié)構(gòu)化信息/數(shù)據(jù),例如,MAH或制造商的地址、產(chǎn)品、物質(zhì)名稱、劑型和給藥途徑等信息;

3.提取已經(jīng)確定的結(jié)構(gòu)化信息(“片段”)并轉(zhuǎn)移到暫存區(qū)域,該區(qū)域在處理過程中有結(jié)構(gòu)化信息;

4.作為自動化處理的一部分,進行各種一致性檢查;

5.系統(tǒng)顯示工作流程和一致性檢查的結(jié)果,人類處理器,人類可以糾正潛在的錯誤并最終批準數(shù)據(jù)集;

6.系統(tǒng)通過學(xué)習人類處理的修正,來逐漸改進其性能;

7.使用確定的標準(如SPOR),將識別出的結(jié)構(gòu)化信息傳輸?shù)较嚓P(guān)的數(shù)據(jù)庫中。

四大挑戰(zhàn):人工智能深入臨床面臨著監(jiān)管挑戰(zhàn)

挑戰(zhàn)1:如何驗證不斷“學(xué)習”的AI軟件

人工智能系統(tǒng)在不斷地學(xué)習,因此它們在未來的醫(yī)療保健中有著巨大的應(yīng)用潛力。然而,這也產(chǎn)生了一個很重要的問題,即當基于人工智能的軟件在使用過程中持續(xù)學(xué)習時,應(yīng)該如何以及何時對其進行驗證。其中一種方法是以交錯的方式驗證它,以便在一定數(shù)量的學(xué)習周期之后能夠重新驗證它。

而另一個問題在于驗證方法是否會產(chǎn)生風險,因為研究人員假設(shè)完全自主學(xué)習解決問題的系統(tǒng)風險更高,因此需要比使用ML技術(shù)進行優(yōu)化的工具更嚴格的驗證。此外,還需要對“人工評分者”和最終結(jié)果進行驗證。因此,在任何情況下,都需要進行討論,以確定最合適的方法來驗證基于AI的軟件。

挑戰(zhàn)2:如何評估從新的基于AI的臨床端點發(fā)出的安全信號

正如前面強調(diào)的,基于AI的技術(shù)幫助開發(fā)用于識別臨床療效的新端點。然而,這些數(shù)據(jù)可能包括必須進行徹底評估的安全信息。在前面使用腕式加速度計對患者進行持續(xù)監(jiān)測的例子中,數(shù)據(jù)可以識別患者是否跌倒或是否處于活動狀態(tài)。因此,在實施這種新方法時,必須適當考慮如何從這些數(shù)據(jù)中獲取和評估安全信號。

挑戰(zhàn)3:如何審查使用AI的醫(yī)療技術(shù)

越來越復(fù)雜的醫(yī)療設(shè)備/軟件,包括那些采用人工智能技術(shù)的設(shè)備/軟件,正給監(jiān)管部門帶來越來越大的審查挑戰(zhàn)。例如,最近第一個人工智能軟件獲得批準,該軟件可以在不需要專家的情況下識別疾病。

此外,利用深度學(xué)習技術(shù)訓(xùn)練神經(jīng)網(wǎng)絡(luò),可以從皮膚鏡圖像中診斷出黑色素瘤。這些產(chǎn)品在美國由FDA審查和批準,而在歐盟,醫(yī)療器械認證體系已經(jīng)比較完善。因此,歐盟成員國確定了60個第三方指定機構(gòu),來決定醫(yī)療設(shè)備/軟件是否符合指令93/42/EEC。

對于這么多組織來說,達到并保持必要的知識深度,以規(guī)范日益復(fù)雜的技術(shù)產(chǎn)品是很困難的,尤其是因為他們不僅需要了解技術(shù)而且還需要了解設(shè)備應(yīng)用的疾病。人工智能聯(lián)盟會議質(zhì)疑向歐盟衛(wèi)生當局分配的醫(yī)療設(shè)備/軟件審查,并認為這是一種集中的方式,以確保適當?shù)膶I(yè)知識可用于評估。

挑戰(zhàn)4:人工智能系統(tǒng)需要數(shù)據(jù)——誰擁有患者的數(shù)據(jù)?

人工智能系統(tǒng)需要數(shù)據(jù)來進行“學(xué)習”,在許多醫(yī)療應(yīng)用中,所需數(shù)據(jù)來自患者。使用這些數(shù)據(jù)開發(fā)的工具可能會為未來的患者護理提供便利,但也可能只是作為商用。在這種情況下,問題的關(guān)鍵在于誰擁有數(shù)據(jù)以及隨后開發(fā)的工具。

這個問題的答案并不簡單,患者群體、法律專家、醫(yī)療服務(wù)提供者、行業(yè)和醫(yī)院等利益相關(guān)方需要密切合作,按照項目范圍和規(guī)定要求,根據(jù)具體情況逐一做出決定。

為了促進使用患者數(shù)據(jù)開發(fā)基于人工智能的創(chuàng)新工具,必須建立并實施具有一致標準的國際框架體系。因此,關(guān)于這個主題的討論是很有必要的,并且應(yīng)該考慮數(shù)據(jù)匿名化等問題。

結(jié)論

本文基于今年在瑞士巴塞爾舉行的人工智能聯(lián)盟會議,該會議討論了衛(wèi)生當局和有關(guān)行業(yè)應(yīng)該如何促進人工智能的使用,以加速臨床開發(fā)和提高監(jiān)管過程的效率。參與討論的監(jiān)管人士一致認為,人工智能為未來改善醫(yī)療提供了無數(shù)機會,其潛力在于:

1.改善臨床開發(fā)期間收集到的數(shù)據(jù)的可靠性;

2.減少產(chǎn)品從研發(fā)到上市的時間和成本;

3.降低衛(wèi)生部門和相關(guān)行業(yè)從業(yè)人員的工作負擔;

4.開發(fā)更多創(chuàng)新的醫(yī)療產(chǎn)品。

人工智能技術(shù)在醫(yī)療領(lǐng)域的應(yīng)用,既是機遇也是挑戰(zhàn),無論是監(jiān)管層還是產(chǎn)業(yè)界,各國都還沒有充分準備好以迎接這一新鮮事物,在探索中前行。

本站聲明: 本文章由作者或相關(guān)機構(gòu)授權(quán)發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點,本站亦不保證或承諾內(nèi)容真實性等。需要轉(zhuǎn)載請聯(lián)系該專欄作者,如若文章內(nèi)容侵犯您的權(quán)益,請及時聯(lián)系本站刪除。
換一批
延伸閱讀

9月2日消息,不造車的華為或?qū)⒋呱龈蟮莫毥谦F公司,隨著阿維塔和賽力斯的入局,華為引望愈發(fā)顯得引人矚目。

關(guān)鍵字: 阿維塔 塞力斯 華為

加利福尼亞州圣克拉拉縣2024年8月30日 /美通社/ -- 數(shù)字化轉(zhuǎn)型技術(shù)解決方案公司Trianz今天宣布,該公司與Amazon Web Services (AWS)簽訂了...

關(guān)鍵字: AWS AN BSP 數(shù)字化

倫敦2024年8月29日 /美通社/ -- 英國汽車技術(shù)公司SODA.Auto推出其旗艦產(chǎn)品SODA V,這是全球首款涵蓋汽車工程師從創(chuàng)意到認證的所有需求的工具,可用于創(chuàng)建軟件定義汽車。 SODA V工具的開發(fā)耗時1.5...

關(guān)鍵字: 汽車 人工智能 智能驅(qū)動 BSP

北京2024年8月28日 /美通社/ -- 越來越多用戶希望企業(yè)業(yè)務(wù)能7×24不間斷運行,同時企業(yè)卻面臨越來越多業(yè)務(wù)中斷的風險,如企業(yè)系統(tǒng)復(fù)雜性的增加,頻繁的功能更新和發(fā)布等。如何確保業(yè)務(wù)連續(xù)性,提升韌性,成...

關(guān)鍵字: 亞馬遜 解密 控制平面 BSP

8月30日消息,據(jù)媒體報道,騰訊和網(wǎng)易近期正在縮減他們對日本游戲市場的投資。

關(guān)鍵字: 騰訊 編碼器 CPU

8月28日消息,今天上午,2024中國國際大數(shù)據(jù)產(chǎn)業(yè)博覽會開幕式在貴陽舉行,華為董事、質(zhì)量流程IT總裁陶景文發(fā)表了演講。

關(guān)鍵字: 華為 12nm EDA 半導(dǎo)體

8月28日消息,在2024中國國際大數(shù)據(jù)產(chǎn)業(yè)博覽會上,華為常務(wù)董事、華為云CEO張平安發(fā)表演講稱,數(shù)字世界的話語權(quán)最終是由生態(tài)的繁榮決定的。

關(guān)鍵字: 華為 12nm 手機 衛(wèi)星通信

要點: 有效應(yīng)對環(huán)境變化,經(jīng)營業(yè)績穩(wěn)中有升 落實提質(zhì)增效舉措,毛利潤率延續(xù)升勢 戰(zhàn)略布局成效顯著,戰(zhàn)新業(yè)務(wù)引領(lǐng)增長 以科技創(chuàng)新為引領(lǐng),提升企業(yè)核心競爭力 堅持高質(zhì)量發(fā)展策略,塑強核心競爭優(yōu)勢...

關(guān)鍵字: 通信 BSP 電信運營商 數(shù)字經(jīng)濟

北京2024年8月27日 /美通社/ -- 8月21日,由中央廣播電視總臺與中國電影電視技術(shù)學(xué)會聯(lián)合牽頭組建的NVI技術(shù)創(chuàng)新聯(lián)盟在BIRTV2024超高清全產(chǎn)業(yè)鏈發(fā)展研討會上宣布正式成立。 活動現(xiàn)場 NVI技術(shù)創(chuàng)新聯(lián)...

關(guān)鍵字: VI 傳輸協(xié)議 音頻 BSP

北京2024年8月27日 /美通社/ -- 在8月23日舉辦的2024年長三角生態(tài)綠色一體化發(fā)展示范區(qū)聯(lián)合招商會上,軟通動力信息技術(shù)(集團)股份有限公司(以下簡稱"軟通動力")與長三角投資(上海)有限...

關(guān)鍵字: BSP 信息技術(shù)
關(guān)閉
關(guān)閉