當(dāng)前位置:首頁(yè) > 芯聞號(hào) > 技術(shù)解析
[導(dǎo)讀]那么,tensorflow和sklearn相比,具體優(yōu)劣勢(shì)有哪些呢?這將是本文介紹的內(nèi)容之一。此外,本文將對(duì)tensorflow的損失函數(shù)加以介紹,以增進(jìn)大家對(duì)tensorflow的了解。

tensorflow是目前最熱門(mén)機(jī)器學(xué)習(xí)框架之一,同其它框架相比,tensorflow具備自身優(yōu)勢(shì)。那么,tensorflow和sklearn相比,具體優(yōu)劣勢(shì)有哪些呢?這將是本文介紹的內(nèi)容之一。此外,本文將對(duì)tensorflow的損失函數(shù)加以介紹,以增進(jìn)大家對(duì)tensorflow的了解。如果你對(duì)tensorflow具有一定興趣,不妨繼續(xù)往下閱讀哦。

一、sklearn、 tensorflow優(yōu)劣勢(shì)

目前,在社區(qū)中,tensorflow會(huì)比較火,很多同學(xué)會(huì)問(wèn),為什么不用tensorflow,這兩個(gè)有什么區(qū)別,我想,主要從以下這方面來(lái)做對(duì)比

1、sklearn主要定位是一種通用的機(jī)器學(xué)習(xí)的學(xué)習(xí)庫(kù),tf主要定位還是深度學(xué)習(xí)。

2、特征工程上,sklearn提供了例如維度壓縮、特征選擇等,但是這樣子并不代表這tf就比sklearn弱。在傳統(tǒng)的機(jī)器學(xué)習(xí)中,sklearn需要使用者自行對(duì)數(shù)據(jù)進(jìn)行數(shù)據(jù)處理,例如進(jìn)行特征選擇,維度壓縮,轉(zhuǎn)換格式等,但是tf可以在開(kāi)始進(jìn)行數(shù)據(jù)訓(xùn)練的過(guò)程中,自行從數(shù)據(jù)中提取有效的特征,從而減少人為的干預(yù)。

3、易用性及封裝度上,sklearn更高,這點(diǎn)上,我想很多用過(guò)的人都清楚,不做累贅描述。

4、面對(duì)項(xiàng)目的不同,sklearn更適合中小型,特別是數(shù)據(jù)量不大的項(xiàng)目,此時(shí)更需要手動(dòng)者對(duì)數(shù)據(jù)進(jìn)行處理,并且選擇合適模型的項(xiàng)目,這些計(jì)算是可以在CPU直接計(jì)算的,沒(méi)有什么硬件要求。相對(duì)的,tf的應(yīng)用領(lǐng)域上,往往更加注重?cái)?shù)據(jù)量較大,一般情況下需要GPU進(jìn)行加速運(yùn)算。目前很多公司并沒(méi)有很大量的數(shù)據(jù),在選擇上,可以作為參考。

二、TensorFlow損失函數(shù)

聲明一個(gè)損失函數(shù)需要將系數(shù)定義為變量,將數(shù)據(jù)集定義為占位符??梢杂幸粋€(gè)常學(xué)習(xí)率或變化的學(xué)習(xí)率和正則化常數(shù)。

在下面的代碼中,設(shè) m 是樣本數(shù)量,n 是特征數(shù)量,P 是類別數(shù)量。這里應(yīng)該在代碼之前定義這些全局參數(shù):

在標(biāo)準(zhǔn)線性回歸的情況下,只有一個(gè)輸入變量和一個(gè)輸出變量:

在多元線性回歸的情況下,輸入變量不止一個(gè),而輸出變量仍為一個(gè)。現(xiàn)在可以定義占位符X的大小為 [m,n],其中 m 是樣本數(shù)量,n 是特征數(shù)量,代碼如下:

在邏輯回歸的情況下,損失函數(shù)定義為交叉熵。輸出 Y 的維數(shù)等于訓(xùn)練數(shù)據(jù)集中類別的數(shù)量,其中 P 為類別數(shù)量:

如果想把 L1 正則化加到損失上,那么代碼如下:

對(duì)于 L2 正則化,代碼如下:

由此,你應(yīng)該學(xué)會(huì)了如何實(shí)現(xiàn)不同類型的損失函數(shù)。那么根據(jù)手頭的回歸任務(wù),你可以選擇相應(yīng)的損失函數(shù)或設(shè)計(jì)自己的損失函數(shù)。在損失項(xiàng)中也可以結(jié)合 L1 和 L2 正則化。

以上便是此次小編帶來(lái)的“tensorflow”相關(guān)內(nèi)容,通過(guò)本文,希望大家對(duì)tensorflow的損失函數(shù)具備一個(gè)清晰的認(rèn)識(shí)。如果你喜歡本文,不妨持續(xù)關(guān)注我們網(wǎng)站哦,小編將于后期帶來(lái)更多精彩內(nèi)容。最后,十分感謝大家的閱讀,have a nice day!

本站聲明: 本文章由作者或相關(guān)機(jī)構(gòu)授權(quán)發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點(diǎn),本站亦不保證或承諾內(nèi)容真實(shí)性等。需要轉(zhuǎn)載請(qǐng)聯(lián)系該專欄作者,如若文章內(nèi)容侵犯您的權(quán)益,請(qǐng)及時(shí)聯(lián)系本站刪除。
換一批
延伸閱讀

9月2日消息,不造車的華為或?qū)⒋呱龈蟮莫?dú)角獸公司,隨著阿維塔和賽力斯的入局,華為引望愈發(fā)顯得引人矚目。

關(guān)鍵字: 阿維塔 塞力斯 華為

倫敦2024年8月29日 /美通社/ -- 英國(guó)汽車技術(shù)公司SODA.Auto推出其旗艦產(chǎn)品SODA V,這是全球首款涵蓋汽車工程師從創(chuàng)意到認(rèn)證的所有需求的工具,可用于創(chuàng)建軟件定義汽車。 SODA V工具的開(kāi)發(fā)耗時(shí)1.5...

關(guān)鍵字: 汽車 人工智能 智能驅(qū)動(dòng) BSP

北京2024年8月28日 /美通社/ -- 越來(lái)越多用戶希望企業(yè)業(yè)務(wù)能7×24不間斷運(yùn)行,同時(shí)企業(yè)卻面臨越來(lái)越多業(yè)務(wù)中斷的風(fēng)險(xiǎn),如企業(yè)系統(tǒng)復(fù)雜性的增加,頻繁的功能更新和發(fā)布等。如何確保業(yè)務(wù)連續(xù)性,提升韌性,成...

關(guān)鍵字: 亞馬遜 解密 控制平面 BSP

8月30日消息,據(jù)媒體報(bào)道,騰訊和網(wǎng)易近期正在縮減他們對(duì)日本游戲市場(chǎng)的投資。

關(guān)鍵字: 騰訊 編碼器 CPU

8月28日消息,今天上午,2024中國(guó)國(guó)際大數(shù)據(jù)產(chǎn)業(yè)博覽會(huì)開(kāi)幕式在貴陽(yáng)舉行,華為董事、質(zhì)量流程IT總裁陶景文發(fā)表了演講。

關(guān)鍵字: 華為 12nm EDA 半導(dǎo)體

8月28日消息,在2024中國(guó)國(guó)際大數(shù)據(jù)產(chǎn)業(yè)博覽會(huì)上,華為常務(wù)董事、華為云CEO張平安發(fā)表演講稱,數(shù)字世界的話語(yǔ)權(quán)最終是由生態(tài)的繁榮決定的。

關(guān)鍵字: 華為 12nm 手機(jī) 衛(wèi)星通信

要點(diǎn): 有效應(yīng)對(duì)環(huán)境變化,經(jīng)營(yíng)業(yè)績(jī)穩(wěn)中有升 落實(shí)提質(zhì)增效舉措,毛利潤(rùn)率延續(xù)升勢(shì) 戰(zhàn)略布局成效顯著,戰(zhàn)新業(yè)務(wù)引領(lǐng)增長(zhǎng) 以科技創(chuàng)新為引領(lǐng),提升企業(yè)核心競(jìng)爭(zhēng)力 堅(jiān)持高質(zhì)量發(fā)展策略,塑強(qiáng)核心競(jìng)爭(zhēng)優(yōu)勢(shì)...

關(guān)鍵字: 通信 BSP 電信運(yùn)營(yíng)商 數(shù)字經(jīng)濟(jì)

北京2024年8月27日 /美通社/ -- 8月21日,由中央廣播電視總臺(tái)與中國(guó)電影電視技術(shù)學(xué)會(huì)聯(lián)合牽頭組建的NVI技術(shù)創(chuàng)新聯(lián)盟在BIRTV2024超高清全產(chǎn)業(yè)鏈發(fā)展研討會(huì)上宣布正式成立。 活動(dòng)現(xiàn)場(chǎng) NVI技術(shù)創(chuàng)新聯(lián)...

關(guān)鍵字: VI 傳輸協(xié)議 音頻 BSP

北京2024年8月27日 /美通社/ -- 在8月23日舉辦的2024年長(zhǎng)三角生態(tài)綠色一體化發(fā)展示范區(qū)聯(lián)合招商會(huì)上,軟通動(dòng)力信息技術(shù)(集團(tuán))股份有限公司(以下簡(jiǎn)稱"軟通動(dòng)力")與長(zhǎng)三角投資(上海)有限...

關(guān)鍵字: BSP 信息技術(shù)
關(guān)閉
關(guān)閉