示波器是工程師的案頭必備工具,看波形,調BUG都離不了,而探頭是必不可少的配件,如果用不好,甚至會嚴重影響測量結果。
一、探頭的負載效應
當探頭探測到被測電路后,探頭成為了被測電路的一部分。 探頭的負載效應包括下面3部分:
1. 阻性負載效應;
2. 容性負載效應;
3. 感性負載效應。
二、探頭的類型
示波器探頭大的方面可以分為: 無源探頭和有源探頭兩大類。 無源有源顧名思義就是需不需要給探頭供電。
無源探頭細分如下:
2. 帶補償的高阻無源探頭(最常用的無源探頭);
3. 高壓探頭
1. 單端有源探頭;
2. 差分探頭;
3. 電流探頭
最常用的高阻無源探頭和有源探頭簡單對比如下:
低阻電阻分壓探頭具備較低的電容負載(<1pf),較高的帶寬(>1.5GHz),較低的價格,但是電阻負載非常大,一般只有500ohm或1Kohm,所以只適合測試低源阻抗的電路,或只關注時間參數測試的電路。
三、有源探頭
我們先來觀察一下用600MHz無源探頭和1.5GHz有源探頭測試1ns上升時間階躍信號的影響。 使用脈沖發(fā)生器產生一個1ns的階躍信號,通過測試夾具后,使用SMA電纜直接連接到一個1.5GHz帶寬的示波器上,這樣示波器上會顯示一個波形(如下圖中的蘭色信號),把這個波形存為參考波形。 然后使用探頭點測測試夾具去探測被測信號,通過SMA直連的波形因為受探頭負載的影響而變成黃色的波形,探頭通道顯示的是綠色的波形。 然后分別測試上升時間,可以看出無源探頭和有源探頭對高速信號的影響。
使用1165A 600MHz無源探頭,使用鱷魚嘴接地線: 受探頭負載的影響,上升時間變?yōu)椋?/span> 1.9ns; 探頭通道顯示的波形存在振鈴,上升時間為: 1.85ns;
使用1156A 1.5GHz有源探頭,使用5cm接地線: 受探頭負載的影響較小,上升時間仍為: 1ns; 探頭通道顯示的波形與原始信號一致,上升時間仍為: 1ns。
單端有源探頭結構圖如下,使用放大器實現阻抗變換的目的。 單端有源探頭的輸入阻抗較高(一般達100Kohm以上),而輸入電容較小(一般小于1pf),通過探頭放大器后連接到示波器,示波器必須使用50ohm輸入阻抗。 有源探頭帶寬寬(現在可達30GHz),而負載小,但是價格相對較高(一般每根探頭達到同樣帶寬示波器價格的10%左右),動態(tài)范圍較?。ㄟ@個需要注意,因為超過探頭動態(tài)范圍的信號,不能正確測試。 一般動態(tài)范圍5V左右),比較脆弱,使用需小心。
差分探頭適合測試高速差分信號(測試時不用接地),適合放大器測試,電源測試,適合虛地測試等應用。
電流探頭在測試直流和低頻交流時的工作原理:
當電流鉗閉合,把一通有電流的導體圍在中心時,響應地會出現一個磁場。 這些磁場使霍爾傳感器內的電子發(fā)生偏轉,在霍爾傳感器的輸出產生一個電動勢。 電流探頭根據這個電動勢產生一個反向(補償)電流送至電流探頭的線圈,使電流鉗中的磁場為零,以防止飽和。 電流探頭根據反向電流測得實際的電流值。 用這個方法,能夠非常線性的測量大電流,包括交直流混合的電流。
隨著被測電流頻率的增加,霍爾效應逐漸減弱,當測量一個不含直流成分的高頻交流電流時,大部分是通過磁場的強弱直接感應到電流探頭的線圈。 此時,探頭就像一個電流變壓器,電流探頭直接測量的是感應電流,而不是補償電流,功放的輸出為線圈提供一個低阻抗的接地回路。
當電流探頭工作在20KHz的高低頻交叉區(qū)域時,部分測量是通過霍爾傳感器實現的,另一部分是通過線圈實現的。
四、有源探頭附件
現代的高帶寬有源探頭都采用分離式的設計方法,即: 探頭放大器與探頭附件部分分開。 這樣設計的好處是:
1、支持更多的探頭附件,使得探測更加的靈活;
2、保護投資,最貴的是探頭放大器(一個探頭放大器可以支持多種探測方式,以前需要幾個探頭來實現); 同時探頭附件保護探頭放大器(探頭附件即使損壞,價格也相對便宜);
3、這種設計方式容易實現高帶寬。
1、點測探頭附件(包括: 單端點測和差分點測);
2、焊接探頭附件(包括: 單端焊接和差分焊接,分離式的ZIF焊接);
3、插孔探頭附件;
4、差分SMA探頭附件(示波器一般直接支持SMA連接,但是如果被測信號需要上拉如HDMI,則必須使用SMA探頭附件)。
探頭附件的電路結構如下圖所示:
1、在探頭附件尖端部分會有一對阻尼電阻(一般82ohm),這對阻尼電阻的作用是消除探頭附件尖端部分的電感的諧振影響;
2、探頭尖端部分的后面是25Kohm的電阻,這個電阻決定了探頭的輸入阻抗(直流輸入阻抗即電阻: 單端25Kohm,差分50Kohm),這個電阻使得被測信號傳輸到探頭放大器部分的功率是非常小的,不至于對被測信號有較大影響。
3、25Kohm的電阻后面是同軸傳輸線部分,這個傳輸線負責把小信號傳輸到放大器。 這個傳輸線的長度可以很長,也可以很短,中間可以加衰減器,也可以加耦合電容。
4、同軸傳輸線連接到放大器,放大器是50ohm匹配的(差分100ohm匹配)。
五、探頭及附件準確度驗證
下圖是一個例子: 被測信號是一個頻率456MHz,邊沿時間約65ps的時鐘信號,分別使用不同類型的探頭和探頭附件的測試結果。
A圖是使用12GHz的1169A差分探頭和N5381A 12GHz焊接探頭附件的測試結果,幾乎完全復現被測信號;
C圖是使用12GHz的1169A差分探頭和較長的測試引線的測試結果,顯示的信號出現很大的過沖;
D圖是使用4GHz的1158A單端探頭和較長的測試引線的測試結果,顯示的信號幾乎是正弦波,失真較大。
驗證探頭和探頭附件需要使用一臺脈沖碼型發(fā)生器(如:81134A,3.35GHz速率,60ps邊沿的脈沖碼型發(fā)生器),如果示波器自帶高速信號輸出功能,也可以使用示波器的這個輔助輸出口代替脈沖碼型發(fā)生器(如: Infiniium示波器的AUX OUT端口可以發(fā)一個高速時鐘: 456MHz頻率,約65ps邊沿)。 另外,需要同軸電纜和測試夾具(Infiniium示波器配置的探頭校準夾具可以作為探頭和探頭附件驗證測試夾具)。 測試夾具的外表是地(Ground),里面走線是信號(Signal),如下圖所示。 使用時,通過同軸電纜把一端接到脈沖碼型發(fā)生器或示波器的輔助輸出AUX OUT端口,另外一端通過適配器連接到示波器的通道1上。
1、如果探頭不接觸信號線,則屏幕上會出現一個原始波形,存為參考波形;
2、當用探頭探測信號線時,通道1的波形會發(fā)生變化,這個變化后的波形就是被探頭和探頭附件影響后的被測信號;
3、這時,連接探頭的通道2會出現一個波形,這個波形是探頭測試到的波形;
4、通過對比參考波形,通道1的波形,和連接探頭的通道2的波形,就可以直觀的看出或通過測試參數讀出三者的差別,可以驗證探頭和探頭附件的影響。
END
免責聲明:本文內容由21ic獲得授權后發(fā)布,版權歸原作者所有,本平臺僅提供信息存儲服務。文章僅代表作者個人觀點,不代表本平臺立場,如有問題,請聯系我們,謝謝!