電動汽車快速充電系列文章之三|常見拓撲結(jié)構(gòu)和功率器件及其他設(shè)計考慮因素
什么是快速直流充電器中使用的常見拓撲結(jié)構(gòu)和功率器件?
在上一節(jié)中,已經(jīng)介紹了快速DCEV充電基礎(chǔ)設(shè)施的標準配置,以及未來可能的典型基礎(chǔ)設(shè)施。下面介紹當今快速DCEV充電器中使用的典型電源轉(zhuǎn)換器拓撲結(jié)構(gòu)和AC-DC和DC-DC的功率器件的概況。
有源整流三相PFC升壓拓撲結(jié)構(gòu)
前端三相PFC升壓級可以用多種拓撲結(jié)構(gòu)實現(xiàn),而且?guī)追N拓撲結(jié)構(gòu)可以滿足相同的電力要求。在“解密三相PFC拓撲結(jié)構(gòu)”中詳細介紹和討論了每種拓撲結(jié)構(gòu)的利弊和操作。圖11展示了快速直流電動車充電應(yīng)用中常見的PFC架構(gòu)。它們之間的一個首要區(qū)別是雙向性。T-中性點鉗制(T-NPC)和I-NPC拓撲結(jié)構(gòu)通過用開關(guān)取代一些二極管而適合雙向操作。6個開關(guān)的結(jié)構(gòu)是一個雙向的perse。
圖11. 用于快速直流電動車充電的典型三相功率因素校正(PFC)升壓拓撲結(jié)構(gòu)。T-NPC(左上)、6開關(guān)(右上)和I-NPC(底部)
另一個影響設(shè)計和功率器件額定電壓的重要因素是架構(gòu)中的級數(shù)。6個開關(guān)的拓撲結(jié)構(gòu)是一個2級架構(gòu),通常用900 V或1200 V的開關(guān)來實現(xiàn)快速直流電動車充電器。這里SiC MOSFET-模塊具有低RDS on(6-40 mQ)區(qū)域的首選解決方案,特別是對于每塊15 kW以上的高功率范圍。這種集成表現(xiàn)出比分立解決方案更優(yōu)越的功率性能,提高了能效,簡化了設(shè)計,減小了整個系統(tǒng)的尺寸,并最大化可靠性。
T-中性點箝位(T-NPC)是一種3級拓撲結(jié)構(gòu),使用1200 V整流器(以雙向形式用開關(guān)代替),中性點路徑上有650 V開關(guān)背對背。I-NPC是一個3級架構(gòu),可能完全用650 ?V開關(guān)實現(xiàn)。650 ?V SiC MOSFET或IGBT與共包二極管代表了這些3級拓撲結(jié)構(gòu)的優(yōu)秀替代方案。
圖12. F1-2 PACK SiC MOSFET模塊半橋。1200 V,10 mQ
DC-DC拓撲結(jié)構(gòu)
在研究DC-DC轉(zhuǎn)換級時,主要采用了三種隔離拓撲結(jié)構(gòu):全橋LLC諧振轉(zhuǎn)換器、全橋移相雙有源橋(DAB)零電壓過渡(ZVT)轉(zhuǎn)換器和全橋移相ZVT轉(zhuǎn)換器(圖13、14和15)。
全橋LLC諧振
LLC轉(zhuǎn)換器在初級端實現(xiàn)了零電壓開關(guān)(ZVS),同時在諧振頻率及以下——在次級端實現(xiàn)了零電流開關(guān)(ZCS),從而在諧振頻率附近產(chǎn)生了非常高的峰值效率。作為一個純粹的頻率調(diào)制(FM)系統(tǒng),當系統(tǒng)工作點偏離諧振頻率時,這可能是需要寬輸出電壓操作時的情況,LLC的能效就會下降。
然而,先進的混合調(diào)制方案使今天的脈沖調(diào)制(PWM)與調(diào)頻相結(jié)合,限制了最大頻率失控和高損耗。不過,這些混合實現(xiàn)方式還是給已經(jīng)有時很麻煩的LLC控制算法增加了復雜性。
此外,并聯(lián)的LLCs轉(zhuǎn)換器的電流共享和同步也不是件容易的事。一般來說,當有可能在相對較小的電壓范圍內(nèi)工作時,和/或當具備實施結(jié)合調(diào)頻和PWM的先進控制策略的開發(fā)技能時,LLC是一種難以超越的設(shè)計。它不僅可以提供最高的能效,而且從各個角度看都是一個非常全面的解決方案。LLC可以作為CLLC以雙向形式實現(xiàn),這是另一種復雜的拓撲結(jié)構(gòu)。
圖13. 全橋LLC轉(zhuǎn)換器
帶有次級同步整流拓撲結(jié)構(gòu)的移相全橋DAB也非常典型。這些都是用PWM工作,一般來說,需要比LLC轉(zhuǎn)換器更簡單的控制。DAB可以被認為是傳統(tǒng)的全橋移相ZVT轉(zhuǎn)換器的演變,但漏電感器在初級端,這簡化了繁瑣的次級端整流,減少了二次開關(guān)或二極管的必要額定擊穿電壓。由于實現(xiàn)了ZVT,這些轉(zhuǎn)換器可以在很寬的輸出電壓范圍內(nèi)提供穩(wěn)定的高能效。這對于支持800 V和400 V電池電壓水平的充電器來說是個方便的因素。
DAB的PWM工作帶來了好處。首先,它傾向于使轉(zhuǎn)換器的電磁干擾(EMI)頻譜比調(diào)頻系統(tǒng)中的更緊密。此外,用固定的開關(guān)頻率,系統(tǒng)在低負載時的行為更容易解決。通過同步整流,DAB是一種雙向的原生拓撲結(jié)構(gòu),是快速電動汽車充電器的最通用的替代方案和合適的解決方案之一。
圖14.全橋移相式DAB ZVT轉(zhuǎn)換器
對于單向操作,傳統(tǒng)的全橋移相ZVT(圖15)仍然是一個可用的選擇,但滲透率越來越低。這種拓撲結(jié)構(gòu)的工作與DAB類似,但位于次級端的電感器在整流中帶來一個顯著的差異。電感器在二極管上設(shè)置了高的反向電壓,這將與占空比成正比和反比,因此,根據(jù)工作條件,二極管上的反向電壓可能超過輸出電壓的兩到三倍。
這種情況在高輸出電壓的系統(tǒng)中(如電動車充電器)可能具有挑戰(zhàn)性,通常多個次級繞組(具有較低的輸出電壓)被串聯(lián)起來。這樣的配置并不那么方便,特別是如果考慮到功率和電壓的額定值,不同的拓撲結(jié)構(gòu)含單一輸出將提供相同或更好的性能。
SiC-模塊代表了上述DC-DC電源轉(zhuǎn)換級中全橋的一個非常合適和常見的解決方案,起價為15 kW。更高的頻率有助于縮小變壓器和電感器的尺寸,從而縮小整個解決方案的外形尺寸。?
圖15. 全橋移相ZVT轉(zhuǎn)換器
拓撲結(jié)構(gòu)的變體
所討論的拓撲結(jié)構(gòu)存在多種變體,帶來額外的優(yōu)勢和折沖。圖16顯示了用于快速電動車充電的全橋LLC轉(zhuǎn)換器的一個常見替代方案。在移相中,開關(guān)在輸入電壓的一半以下,并使用600 V和650 V的斷電電壓器件。650 V SiC MOSFET、650 V SuperFET 3快速恢復(FR)MOSFET和650 V FS4 IGBT將有助于解決不同的系統(tǒng)要求。
同樣,用于出極端的二極管和整流器需要650 V的阻斷電壓等級。這些3級架構(gòu)允許單極開關(guān),這有助于減少峰值電流和電流紋波,這將導致用更小的變壓器。這種拓撲結(jié)構(gòu)的主要缺點之一是,與具有較少電源開關(guān)的2級版本相比,控制算法需要額外的復雜程度。雙有源橋以及雙有源橋可以很容易地在初級端和次級端并聯(lián)或堆疊,以最配合快速電動汽車充電器的電流和電壓需求。
圖16. 3級全橋LLC
這種變體在初級端堆疊(只有一半的輸入電壓應(yīng)用于每個變壓器),在次級端并聯(lián)。
次級端整流
關(guān)于次級端整流,如圖15所示,可以有多種解決方案,而且都可以使用不同的拓撲結(jié)構(gòu)。對于400 V和800 V的電池水平和全橋整流,650 V和1200 V的SiC肖特基二極管通常是獨特的性價比解決方案。
由于其零反向恢復特性,與硅基替代品相比,這些器件大大增強了整流性能和能效,大大降低了損耗和整流級的復雜性。硅基二極管,如Hyperfast、UltraFast和Stealth,可以作為成本非常有限的項目的替代品,但要犧牲性能和復雜性。采用中心抽頭整流的解決方案(圖15)對于高電壓輸出整流級來說并不方便。
與全橋整流不同的是,在全橋整流中,二極管的標準反向電壓等于輸出電壓,而在中心抽頭配置中,二極管要承受這個數(shù)值的兩倍。常規(guī)的全橋移相轉(zhuǎn)換器(電感在次級端),正如所解釋的那樣,在兩種整流方法(全橋或中心抽頭整流)中都需要更高的擊穿電壓二極管。為了克服常規(guī)全橋移相轉(zhuǎn)換器對1200 V或1700 V額定二極管的需求,幾個輸出將被串聯(lián)起來。
其他重要的設(shè)計考慮因素
除了電源轉(zhuǎn)換器中的拓撲結(jié)構(gòu)和開關(guān)器件外,在開發(fā)快速電動車充電器時,還有其他重要領(lǐng)域需要考慮,尤其是在使用SiC開關(guān)在高頻率下工作時。
門極驅(qū)動系統(tǒng)
在所有的拓撲結(jié)構(gòu)中,驅(qū)動系統(tǒng)仍然是快速直流電動車充電器的一個重要方面,對系統(tǒng)性能有直接影響。
隔離
在隔離的主題下,首先要考慮的問題之一。鑒于快速直流電動車充電器所討論的高功率和高電壓,電隔離對于高端驅(qū)動器是必須的。對于低端同類產(chǎn)品,盡管從安全角度看并非總是嚴格必要的,但常見的做法是使用與高端相同的門極驅(qū)動系統(tǒng)和電路。
這種方法帶來了多種好處,包括解決方案的實施和系統(tǒng)的穩(wěn)健性。一方面,它有利于同一半橋上的開關(guān)器件之間的延遲匹配。這簡化了PWM序列和死區(qū)時間的控制和實施,以防止擊穿事件。此外,隔離驅(qū)動器通過最大限度地提高其共模瞬態(tài)抗擾度(CMTI)來增強系統(tǒng)的堅固性,這在使用快速開關(guān)寬禁帶技術(shù)在高dV/dt 驅(qū)動時特別重要,如SiC。
這里還需要指出的是,采用開爾文連接的電源開關(guān)需要一個浮動或電隔離的驅(qū)動器(在高端和低端)來獲得配置的好處,因為它將大大減少損耗和提高傳播時間。
片上保護和功能
門極驅(qū)動器的另一個關(guān)鍵考慮因素是片上集成功能(除電隔離外)和保護。根據(jù)系統(tǒng)的要求和開關(guān)的類型,可能需要過電流保護(“DESAT”)—— IGBT和SiC MOSFET的典型保護——米勒鉗制(避免錯誤開啟)。包括這些或其他必要的封裝功能可以實現(xiàn)緊湊的系統(tǒng),并最大限度地減少布局中的寄生電感,這是使用SiC的高開關(guān)頻率系統(tǒng)的基本要求。
在數(shù)字控制的系統(tǒng)中,內(nèi)置保護也非常方便,可以提供板載保護。在系統(tǒng)能效方面,門極驅(qū)動器的接受端和源端能力對于通過快速充電和放電寄生門極電容實現(xiàn)快速開關(guān)轉(zhuǎn)換至關(guān)重要。在使用SiC技術(shù)時,這在高功率應(yīng)用中特別重要,因為這比基于Si的IGBT或SJ MOSFET實現(xiàn)更快的轉(zhuǎn)換。
電隔離門極驅(qū)動器系列具有3.5 kV和5 kV額定值的NCD57XXX和NCD51XXX為開發(fā)快速電動車充電器帶來設(shè)計靈活性和系統(tǒng)可靠性,在片上集成了多種功能和保護措施,并顯示出高達9 A的驅(qū)動電流能力。該產(chǎn)品組合包括單通道驅(qū)動器,如NCD57000/1、NCD5708x、NCD5709x、NCP51152/7,以及雙通道驅(qū)動器,如NCP51561、NCP51563和NCD57252/256,以滿足所有使用情況。
圖17. 電隔離的單通道和雙通道門驅(qū)動器框圖
驅(qū)動器電源
與門極驅(qū)動器相鄰的一個話題是驅(qū)動它們所需的隔離電源。SiC開關(guān)的最佳性能是通過 20 V – 5 V的偏置電壓實現(xiàn)的,而IGBT通常需要 15 V/0 V或15 V。更多的細節(jié)可以在“Gen11200VSiCMOSFETs