當(dāng)前位置:首頁 > 公眾號(hào)精選 > 21ic電子網(wǎng)
[導(dǎo)讀]SERDES是英文SERializer(串行器)/DESerializer(解串器)的簡稱,它是一種主流的時(shí)分多路復(fù)用(TDM)、點(diǎn)對(duì)點(diǎn)(P2P)的串行通信技術(shù),即在發(fā)送端多路低速并行信號(hào)被轉(zhuǎn)換成高速串行信號(hào),經(jīng)過傳輸媒體(光纜或銅線),最后在接收端高速串行信號(hào)重新轉(zhuǎn)換成低速并行...

超詳細(xì):SerDes知識(shí)講解

SERDES是英文SERializer(串行器)/DESerializer(解串器)的簡稱,它是一種主流的時(shí)分多路復(fù)用(TDM)、點(diǎn)對(duì)點(diǎn)(P2P)的串行通信技術(shù),即在發(fā)送端多路低速并行信號(hào)被轉(zhuǎn)換成高速串行信號(hào),經(jīng)過傳輸媒體(光纜或銅線),最后在接收端高速串行信號(hào)重新轉(zhuǎn)換成低速并行信號(hào)。這種點(diǎn)對(duì)點(diǎn)的串行通信技術(shù),充分利用傳輸媒體的信道容量,可以減少所需的傳輸信道和器件引腳數(shù)目,提升信號(hào)的傳輸速度,從而大大降低通信成本。超詳細(xì):SerDes知識(shí)講解


01

SERDES的作用





1.1并行總線接口

在SerDes流行之前,芯片之間的互聯(lián)通過系統(tǒng)同步或者源同步的并行接口傳輸數(shù)據(jù),圖1.1演示了系統(tǒng)和源同步并行接口。

超詳細(xì):SerDes知識(shí)講解隨著接口頻率的提高,在系統(tǒng)同步接口方式中,有幾個(gè)因素限制了有效數(shù)據(jù)窗口寬度的繼續(xù)增加。

a)、時(shí)鐘到達(dá)兩個(gè)芯片的傳播延時(shí)不相等(clock skew)

b)、并行數(shù)據(jù)各個(gè)bit的傳播延時(shí)不相等(data skew)

c)、時(shí)鐘的傳播延時(shí)和數(shù)據(jù)的傳播延時(shí)不一致(skew between data and clock)

雖然可以通過在目的芯片(chip #2)內(nèi)用PLL補(bǔ)償時(shí)鐘延時(shí)差(clock skew),但是PVT變化時(shí),時(shí)鐘延時(shí)的變化量和數(shù)據(jù)延時(shí)的變化量是不一樣的。這又進(jìn)一步惡化了數(shù)據(jù)窗口。源同步接口方式中,發(fā)送側(cè)Tx把時(shí)鐘伴隨數(shù)據(jù)一起發(fā)送出去, 限制了clock skew對(duì)有效數(shù)據(jù)窗口的危害。通常在發(fā)送側(cè)芯片內(nèi)部,源同步接口把時(shí)鐘信號(hào)和數(shù)據(jù)信號(hào)作一樣的處理,也就是讓它和數(shù)據(jù)信號(hào)經(jīng)過相同的路徑,保持相同的延時(shí)。這樣PVT變化時(shí),時(shí)鐘和數(shù)據(jù)會(huì)朝著同一個(gè)方向增大或者減小相同的量,對(duì)skew最有利。我們來做一些合理的典型假設(shè),假設(shè)一個(gè)32bit數(shù)據(jù)的并行總線,??a)、發(fā)送端的數(shù)據(jù)skew = 50 ps??—很高的要求

b)、pcb走線引入的skew = 50ps? ?—很高的要求

c)、時(shí)鐘的周期抖動(dòng)jitter = /-50 ps? —很高的要求

d)、接收端觸發(fā)器采樣窗口?= 250 ps —Xilinx V7高端器件的IO觸發(fā)器

可以大致估計(jì)出并行接口的最高時(shí)鐘?= 1/(50 50 100 250) = 2.2GHz (DDR)或者1.1GHz (SDR)。

利用源同步接口,數(shù)據(jù)的有效窗口可以提高很多。通常頻率都在1GHz以下。在實(shí)際應(yīng)用中可以見到如SPI4.2接口的時(shí)鐘可以高達(dá)DDR 700MHz x 16bits位寬。DDR Memory接口也算一種源同步接口,如DDR3在FPGA中可以做到大約800MHz的時(shí)鐘。

要提高接口的傳輸帶寬有兩種方式,一種是提高時(shí)鐘頻率,一種是加大數(shù)據(jù)位寬。那么是不是可以無限制的增加數(shù)據(jù)的位寬呢?這就要牽涉到另外一個(gè)非常重要的問題—–同步開關(guān)噪聲(SSN)。

這里不討論SSN的原理,直接給出SSN的公式:SSN = L *N* di/dt。

L是芯片封裝電感,N是數(shù)據(jù)寬度,di/dt是電流變化的斜率。

隨著頻率的提高,數(shù)據(jù)位款的增加,SSN成為提高傳輸帶寬的主要瓶頸。圖1.2是一個(gè)DDR3串?dāng)_的例子。圖中低電平的理論值在0V,由于SSN的影響,低電平表現(xiàn)為震蕩,震蕩噪聲的最大值達(dá)610mV,因此噪聲余量只有1.5V/2-610mV=140mV。超詳細(xì):SerDes知識(shí)講解

Figure 1.2??DDR3串?dāng)_演示

因此也不可能靠無限的提高數(shù)據(jù)位寬來繼續(xù)增加帶寬。一種解決SSN的辦法是使用差分信號(hào)替代單端信號(hào),使用差分信號(hào)可以很好的解決SSN問題,代價(jià)是使用更多的芯片引腳。使用差分信號(hào)仍然解決不了數(shù)據(jù)skew的問題,很大位寬的差分信號(hào)再加上嚴(yán)格的時(shí)序限制,給并行接口帶來了很大的挑戰(zhàn)。1.2 SerDes接口

源同步接口的時(shí)鐘頻率已經(jīng)遇到瓶頸,由于信道的非理想(channel)特性,再繼續(xù)提高頻率,信號(hào)會(huì)被嚴(yán)重?fù)p傷,就需要采用均衡和數(shù)據(jù)時(shí)鐘相位檢測等技術(shù)。這也就是SerDes所采用的技術(shù)。SerDes(Serializer-Deserializer)是串行器和解串器的簡稱。串行器(Serializer)也稱為SerDes發(fā)送端(Tx),(Deserializer)也稱為接收端Rx。Figure1.3是一個(gè)N對(duì)SerDes收發(fā)通道的互連演示,一般N小于4。超詳細(xì):SerDes知識(shí)講解

可以看到,SerDes不傳送時(shí)鐘信號(hào),這也是SerDes最特別的地方,SerDes在接收端集成了CDR(Clock Data Recovery)電路,利用CDR從數(shù)據(jù)的邊沿信息中抽取時(shí)鐘,并找到最優(yōu)的采樣位置。

SerDes采用差分方式傳送數(shù)據(jù)。一般會(huì)有多個(gè)通道的數(shù)據(jù)放在一個(gè)group中以共享PLL資源,每個(gè)通道仍然是相互獨(dú)立工作的。

SerDes需要參考時(shí)鐘(Reference Clock),一般也是差分的形式以降低噪聲。接收端Rx和發(fā)送端Tx的參考時(shí)鐘可以允許幾百個(gè)ppm的頻差(plesio-synchronous system),也可以是同頻的時(shí)鐘,但是對(duì)相位差沒有要求。

作個(gè)簡單的比較,一個(gè)SerDes通道(channel)使用4個(gè)引腳(Tx /-,Rx /-), 目前的FPGA可以做到高達(dá)28Gbps。而一個(gè)16bits的DDR3-1600的線速率為1.6Gbps*16 = 25Gbps,卻需要50個(gè)引腳。此對(duì)比可以看出SerDes在傳輸帶寬上的優(yōu)勢。

相比源同步接口,SerDes的主要特點(diǎn)包括:

a) SerDes在數(shù)據(jù)線中時(shí)鐘內(nèi)嵌,不需要傳送時(shí)鐘信號(hào)。

b) SerDes通過加重/均衡技術(shù)可以實(shí)現(xiàn)高速長距離傳輸,如背板。

c) SerDes 使用了較少的芯片引腳

1.3?中間類型

也存在一些介于SerDes和并行接口之間的接口類型,相對(duì)源同步接口而言,這些中間類型的接口也使用串行器(Serializer)解串器(Deserializer),同時(shí)也傳送用于同步的時(shí)鐘信號(hào)。這類接口如視頻顯示接口7:1 LVDS等。
02

SerDes結(jié)構(gòu)(architecture)


SerDes的主要構(gòu)成可以分為三部分,PLL模塊,發(fā)送模塊Tx,接收模塊Rx。為了方便維護(hù)和測試,還會(huì)包括控制和狀態(tài)寄存器,環(huán)回測試,PRBS測試等功能。見圖2.1。超詳細(xì):SerDes知識(shí)講解圖中藍(lán)色背景子模塊為PCS層,是標(biāo)準(zhǔn)的可綜合CMOS數(shù)字邏輯,可以硬邏輯實(shí)現(xiàn),也可以使用FPGA軟邏輯實(shí)現(xiàn),相對(duì)比較容易被理解。褐色背景的子模塊是PMA層,是數(shù)?;旌螩ML/CMOS電路,是理解SerDes區(qū)別于并行接口的關(guān)鍵,也是本文要討論的內(nèi)容。

發(fā)送方向(Tx)信號(hào)的流向: FPGA軟邏輯(fabric)送過來的并行信號(hào),通過接口FIFO(Interface FIFO),送給8B/10B編碼器(8B/10B encoder)或擾碼器(scambler),以避免數(shù)據(jù)含有過長連零或者連1。之后送給串行器(Serializer)進(jìn)行 并->串 轉(zhuǎn)換。串行數(shù)據(jù)經(jīng)過均衡器(equalizer)調(diào)理,有驅(qū)動(dòng)器(driver)發(fā)送出去。

接收方向(Rx)信號(hào)的流向, 外部串行信號(hào)由線性均衡器(Linear Equalizer)或DFE (Decision Feedback Equalizer判決反饋均衡)結(jié)構(gòu)均衡器調(diào)理,去除一部分確定性抖動(dòng)(Deterministic jitter)。CDR從數(shù)據(jù)中恢復(fù)出采樣時(shí)鐘,經(jīng)解串器變?yōu)閷?duì)齊的并行信號(hào)。8B/10B解碼器(8B/10B decoder)或解擾器(de-scambler)完成解碼或者解擾。如果是異步時(shí)鐘系統(tǒng)(plesio-synchronous system),在用戶FIFO之前還應(yīng)該有彈性FIFO來補(bǔ)償頻差。

補(bǔ)充:均衡器

在通信系統(tǒng)的基帶或中頻部分插入的,能夠減少碼間干擾,?起到補(bǔ)償作用的濾波器。分為頻域均衡器和時(shí)域均衡器。

頻域均衡器

頻域均衡器利用可調(diào)濾波器的頻率特性來彌補(bǔ)實(shí)際信道的幅頻特性和群延時(shí)特性,使包括均衡器在內(nèi)的整個(gè)系統(tǒng)的總頻率特性滿足無碼間干擾傳輸條件。

時(shí)域均衡器時(shí)域均衡器是直接從時(shí)間響應(yīng)角度考慮,使包括均衡器在內(nèi)的整個(gè)傳輸系統(tǒng)的沖激響應(yīng)滿足無碼間干擾條件。頻域均衡滿足奈奎斯特整形定理的要求,僅在判決點(diǎn)滿足無碼間干擾的條件相對(duì)寬松一些。所以,在數(shù)字通信中一般時(shí)域均衡器使用較多。

時(shí)域均衡器可以分兩大類:線性均衡器和非線性均衡器。如果接收機(jī)中判決的結(jié)果經(jīng)過反饋用于均衡器的參數(shù)調(diào)整,則為非線性均衡器;反之,則為線性均衡器。在線性均衡器中,最常用的均衡器結(jié)構(gòu)是線性橫向均衡器,它由若干個(gè)抽頭延遲線組成,延時(shí)時(shí)間間隔等于碼元間隔。非線性均衡器的種類較多,包括判決反饋均衡器(DFE)、最大似然(ML)符號(hào)檢測器和最大似然序列估計(jì)等。

PLL負(fù)責(zé)產(chǎn)生SerDes各個(gè)模塊所需要的時(shí)鐘信號(hào),并管理這些時(shí)鐘之間的相位關(guān)系。以圖中線速率10Gbps為例,參考時(shí)鐘頻率250MHz。Serializer/Deserializer至少需要5GHz 0相位時(shí)鐘和5GHz 90度相位時(shí)鐘,1GHz(10bit并行)/1.25GHz(8bit并行)時(shí)鐘等。

一個(gè)SerDes通常還要具調(diào)試能力。例如偽隨機(jī)碼流產(chǎn)生和比對(duì),各種環(huán)回測試,控制狀態(tài)寄存器以及訪問接口,LOS檢測, 眼圖測試等。

2.1串行器解串器(Serializer/Deserializer)

串行器Serializer把并行信號(hào)轉(zhuǎn)化為串行信號(hào)。Deserializer把串行信號(hào)轉(zhuǎn)化為并行信號(hào)。一般地,并行信號(hào)為8 /10bit或者16/20bit寬度,串行信號(hào)為1bit寬度(也可以分階段串行化,如8bit->4bit->2bit->equalizer->1bit以降低equalizer的工作頻率)。采用擾碼(scrambled)的協(xié)議如SDH/SONET, SMPTE SDI使用8/16bit的并行寬度,采用8B/10B編碼的協(xié)議如PCIExpress,GbE使用10bits/20bits寬度。

一個(gè)4:1的串行器如圖所示。8:1或16:1的串行器采用類似的實(shí)現(xiàn)。實(shí)現(xiàn)時(shí),為了降低均衡器的工作頻率,串行器會(huì)先把并行數(shù)據(jù)變?yōu)?bits,送給均衡器equalizer濾波,最后一步再作2:1串行化,本文后面部分都按1bit串行信號(hào)解釋。?

超詳細(xì):SerDes知識(shí)講解

一個(gè)1:4的解串器如圖2.3所示,8:1或16:1的解串器采用類似的實(shí)現(xiàn)。實(shí)現(xiàn)時(shí),為了降低均衡器(DFE based Equalizer)的工作頻率,DFE工作在DDR模式下,解串器的輸入是2bit或者更寬,本文后面部分都按1bit串行信號(hào)解釋。?超詳細(xì):SerDes知識(shí)講解

Serializer/Deserializer的實(shí)現(xiàn)采用雙沿(DDR)的工作方式,利用面積換速度的策略,降低了電路中高頻率電路的比例,從而降低了電路的噪聲。

接收方向除了Deserializer之外,一般帶有還有對(duì)齊功能邏輯(Aligner)。相對(duì)SerDes發(fā)送端,SerDes接收端起始工作的時(shí)刻是任意的,接收器正確接收的第一個(gè) bit可能是發(fā)送并行數(shù)據(jù)的任意bit位置。因此,需要對(duì)齊邏輯來判斷從什么bit位置開始,以組成正確的并行數(shù)據(jù)。對(duì)齊邏輯通過在串行數(shù)據(jù)流中搜索特征碼字(Alignment Code)來決定串并轉(zhuǎn)換的起始位置。比如8B/10B編碼的協(xié)議通常用K28.5(正碼10’b1110000011,負(fù)碼10’b0001111100)來作為對(duì)齊字。圖2.4為一個(gè)對(duì)齊邏輯的演示。通過滑窗,逐bit比對(duì),以找到對(duì)齊碼(Align-Code)的位置,經(jīng)過多次在相同的位置找到對(duì)齊碼之后,狀態(tài)機(jī)鎖定位置并選擇相應(yīng)的位置輸出對(duì)齊數(shù)據(jù)。?

超詳細(xì):SerDes知識(shí)講解

2.2發(fā)送端均衡器( Tx Equalizer)

SerDes信號(hào)從發(fā)送芯片到達(dá)接收芯片所經(jīng)過的路徑稱為信道(channel),包括芯片封裝,pcb走線,過孔,電纜,連接器等元件。從頻域看,信道可以簡化為一個(gè)低通濾波器(LPF)模型,如果SerDes的速率大于信道(channel)的截止頻率,就會(huì)一定程度上損傷(distort)信號(hào)。均衡器的作用就是補(bǔ)償信道對(duì)信號(hào)的損傷。發(fā)送端的均衡器采用FFE(Feed forward equalizers)結(jié)構(gòu),發(fā)送端的equalizer也稱作加重器(emphasis)。加重(Emphasis)分為去加重(de-emphasis)和預(yù)加重(pre-emphasis)。De-emphasis降低差分信號(hào)的擺幅(swing)。Pre-emphasis增加差分信號(hào)的擺幅。FPGA大部分使用de-emphasis的方式,加重越強(qiáng),信號(hào)的平均幅度會(huì)越小。

發(fā)送側(cè)均衡器設(shè)計(jì)為一個(gè)高通濾波器(HPF),大致為信道頻響H(f)的反函數(shù)H-1(f),F(xiàn)FE的目標(biāo)是讓到達(dá)接收端的信號(hào)為一個(gè)干凈的信號(hào)。FFE的實(shí)現(xiàn)方式有很多,一個(gè)典型的例子如圖2.5所示。?

超詳細(xì):SerDes知識(shí)講解

調(diào)節(jié)濾波器的系數(shù)可以改變?yōu)V波器的頻響,以補(bǔ)償不同的信道特性,一般可以動(dòng)態(tài)配置。以10Gbps線速率為例,圖2.5為DFE頻率響應(yīng)演示??梢钥吹?,對(duì)于C0=0,C1=1.0,C2=-0.25的配置,5GHz處高頻增益比低頻區(qū)域高出4dB,從而補(bǔ)償信道對(duì)高頻頻譜的衰減。?超詳細(xì):SerDes知識(shí)講解

采樣時(shí)鐘的頻率限制了這種FFE最高只能補(bǔ)償?shù)紽s/2(例子中Fs/2=5GHz)。根據(jù)采樣定理,串行數(shù)據(jù)里的信息都包含在5GHz以內(nèi),從這個(gè)角度看也就足夠了。如果要補(bǔ)償Fs/2以上的頻率,就要求FFE高于Fs的工作時(shí)鐘,或者連續(xù)時(shí)間域?yàn)V波器(Continuous Time FFE)。

圖2.7為DFE時(shí)域?yàn)V波效果的演示,以10Gbps線速率為例,一個(gè)UI=0.1 nS=100ps。演示的串行數(shù)據(jù)碼流為二進(jìn)制[00000000100001111011110000]。?

超詳細(xì):SerDes知識(shí)講解2.3接收端均衡器( Rx Equalizer)?

2.3.1 線形均衡器(Linear Equalizer)

接收端均衡器的目標(biāo)和發(fā)送均衡器是一致的。對(duì)于低速(<5Gbps)SerDes,通常采用連續(xù)時(shí)間域,線性均衡器實(shí)現(xiàn)如尖峰放大器(peaking amplifier), 均衡器對(duì)高頻分量的增益大于對(duì)低頻分量的增益。圖2.8為一個(gè)線性均衡器的頻域特性。通常工廠會(huì)對(duì)均衡特性封裝為數(shù)種級(jí)別,可以動(dòng)態(tài)設(shè)置,以適應(yīng)不同的信道特性,如High/Med/Low等。

超詳細(xì):SerDes知識(shí)講解

2.3.2 DFE均衡器(Decision Feedback Equalizer)

對(duì)于高速(>5Gbps)SerDes,由于信號(hào)的抖動(dòng)(如ISI相關(guān)的確定性抖動(dòng))可能會(huì)超過或接近一個(gè)符號(hào)間隔(UI, Unit Interval),單單使用線性均衡器不再適用。線性均衡器對(duì)噪聲和信號(hào)一起放大,并沒有改善SNR或者說BER。對(duì)于高速SerDes,采用一種稱作DFE (Decision Feedback Equalizer裁決反饋均衡器)的非線性均衡器。DFE通過跟蹤過去多個(gè)UI的數(shù)據(jù)(history bits)來預(yù)測當(dāng)前bit的采樣門限。DFE只對(duì)信號(hào)放大,不對(duì)噪聲放大,可以有效改善SNR。

補(bǔ)充:

Unit Interval 單位時(shí)間間隔:通常在通信信號(hào)的抖動(dòng)測試中用來表示抖動(dòng)幅度的單位。表示一個(gè)等步信號(hào)的兩個(gè)相鄰的有效瞬時(shí)之間的標(biāo)稱時(shí)間差。圖2.9演示了一個(gè)典型的5階DFE。接收的串行數(shù)據(jù)由比較器(slicer)來判決0或者1,然后數(shù)據(jù)流由一個(gè)濾波器來預(yù)測碼間干擾(ISI),再從輸入的原始信號(hào)中減掉碼間干擾(ISI),從而的到一個(gè)干凈的信號(hào)。為了讓DFE均衡器的電路工作在電路線形范圍內(nèi),串行信號(hào)先經(jīng)過VGA自動(dòng)控制進(jìn)入DFE的信號(hào)幅度。

超詳細(xì):SerDes知識(shí)講解

為了理解DFE的工作原理,先來看一個(gè)10Gbps背板的脈沖響應(yīng),這個(gè)背板模型是matlab給出的一個(gè)基于實(shí)測的模型,具有典型特性。

超詳細(xì):SerDes知識(shí)講解

圖2.10中,一橫格代表一個(gè)UI的時(shí)間??梢钥闯?,一個(gè)UI( 0.1nS = 1/10GHz )的脈沖信號(hào),通過背板后,泄漏到前后多個(gè)相鄰的UI里面,從而對(duì)其他UI的數(shù)據(jù)產(chǎn)生干擾。采樣點(diǎn)后面的干擾叫做post-cursor干擾,采樣點(diǎn)前面的叫做pre-cursor干擾。DFE的第一個(gè)系數(shù) h1(此例中0.175)矯正第一個(gè)post-cursor, 第二個(gè)系數(shù) h2(此例中0.075)矯正第二個(gè)post-cursor。DFE的階數(shù)越多,能夠校正的post-cursor也越多。?

超詳細(xì):SerDes知識(shí)講解

用上述的背板傳輸一個(gè)11011的碼流,由于post-cursor和pre-cursor的泄漏,如果沒有均衡,將會(huì)導(dǎo)致’0’不能識(shí)別,見圖2.11。假定有一個(gè)2階的DFE, 那么‘0’bit處的幅度應(yīng)該減去第一個(gè)’1’bit的h2, 第二個(gè)’1’bit的h1, 得到0.35-0.075-0.175 =0.1, 足夠被識(shí)別為0。

可見,DFE計(jì)算歷史bits的post-cursor干擾,在當(dāng)前bit中把干擾減去,從而得到干凈的信號(hào)。由于DFE只能能夠校正post-cursor ISI,所以DFE前面一般會(huì)帶有LE。只要DFE的系數(shù)接近信道(channel)的脈沖相應(yīng),就可以到的比較理想的結(jié)果。

但是,信道是一個(gè)時(shí)變的媒介,比如溫度電壓工藝的慢變化等因素會(huì)改變信道channel的特性。因此DFE的系數(shù)需要自適應(yīng)算法,自動(dòng)撲獲和跟隨信道的變化。DFE系數(shù)自適應(yīng)算法非常學(xué)術(shù),每個(gè)廠商的算法都是保密的,不對(duì)外公布。對(duì)于NRZ碼,典型的算法準(zhǔn)則是基于sign-error驅(qū)動(dòng)的算法。Sign-error是均衡后信號(hào)的幅度和期望值的誤差,算法以sign-error均方差最小為優(yōu)化目標(biāo),逐次優(yōu)化h1/h2/h3……

因?yàn)閟ign-error和采樣位置是耦合在一起相互影響,因此也可以sign-error和眼圖寬度兩個(gè)準(zhǔn)則為目標(biāo)進(jìn)行DFE系數(shù)的預(yù)測。也因此,采用DFE結(jié)構(gòu)的SerDes通常都會(huì)帶有內(nèi)嵌眼圖測試電路,如圖2.9所示。眼圖測試電路通過垂直方向上平移信號(hào)的幅度,水平方向上平移采樣位置,計(jì)算每一個(gè)平移位置上的誤碼率BER,從而得到每一個(gè)偏移位置與誤碼率關(guān)系的”眼圖”,見圖2.12。

超詳細(xì):SerDes知識(shí)講解2.4時(shí)鐘數(shù)據(jù)恢復(fù)(CDR)

CDR的目標(biāo)是找到最佳的采樣時(shí)刻,這需要數(shù)據(jù)有豐富的跳變。CDR有一個(gè)指標(biāo)叫做最長連0或連1長度容忍(Max Run Length或者Consecutive Identical Digits)能力。如果數(shù)據(jù)長時(shí)間沒有跳變,CDR就無法得到精確的訓(xùn)練,CDR采樣時(shí)刻就會(huì)漂移,可能采到比真實(shí)數(shù)據(jù)更多的1或者0。而且,當(dāng)數(shù)據(jù)重新恢復(fù)跳變的時(shí),有可能出現(xiàn)錯(cuò)誤的采樣。比如有的CDR采用PLL實(shí)現(xiàn),如果數(shù)據(jù)長時(shí)間停止跳變,PLL的輸出頻率就會(huì)漂移。

實(shí)際上,SerDes上傳輸?shù)臄?shù)據(jù)要么利用加擾,要么利用編碼的方法來保證Max Run Length在一定的范圍內(nèi)。

a) 8B/10B編碼的方法可以保證Max Run Length不超過5個(gè)UI。

b) 64B/66B編碼的方法可以保證Max Run Length不超過66個(gè)UI

c) SONET/SDH加擾得方法可以保證Max Run Length不超過80個(gè)UI(BER<10^-12)

在點(diǎn)到點(diǎn)的連接中,大部分SerDes協(xié)議采用連續(xù)模式(continuous-mode),線路上數(shù)據(jù)流是持續(xù)而沒有中斷的。在點(diǎn)到多點(diǎn)的連接中,往往采用突發(fā)模式(burst-mode)如PON。很顯然Burst-Mode對(duì)SerDes鎖定時(shí)間有苛刻的要求。

Continuous-Mode的協(xié)議如SONET/SDH則要求容忍較長的連0, 而且對(duì)CDR的抖動(dòng)傳輸性能也有嚴(yán)格的要求(因?yàn)閘oop timing)。

如果收(Rx)發(fā)(Tx)是異步模式(asynchronous mode),或者頻譜擴(kuò)展(SSC)應(yīng)用中,則要求CDR有較寬的相位跟蹤范圍以跟蹤Rx/Tx頻率差。

根據(jù)應(yīng)用場景的不同需求,CDR的實(shí)現(xiàn)也有非常多種架構(gòu)。FPGA SerDes常常采用的基于數(shù)字PLL的CDR,和基于相位插值器的CDR。這兩種CDR在環(huán)路中采用數(shù)字濾波器,相對(duì)模擬charge pump加模擬濾波器的結(jié)構(gòu)更節(jié)省面積。

超詳細(xì):SerDes知識(shí)講解

圖2.13是基于相位插值器的CDR。鑒相器陣列對(duì)輸入的串行數(shù)據(jù)與M個(gè)等相位間隔的時(shí)鐘在多個(gè)UI的跨度上進(jìn)行相位比較,得到多個(gè)UI跨度上的相位誤差信號(hào)。相位誤差信號(hào)的頻率很高,寬度也很寬,經(jīng)過抽取器降速并平滑后,送給數(shù)字濾波器。數(shù)字濾波器的性能會(huì)影響環(huán)路的帶寬,穩(wěn)定性,反應(yīng)速度等。經(jīng)數(shù)字濾波器平滑后的誤差信號(hào)送給相位插值器(phase rotators)修正時(shí)鐘相位。最終環(huán)路鎖定時(shí),理論上相位誤差為零,90度偏移的時(shí)鐘作為恢復(fù)時(shí)鐘采樣串行輸入。

超詳細(xì):SerDes知識(shí)講解

圖2.14是基于DPLL的CDR, 分為兩個(gè)環(huán)路,對(duì)數(shù)據(jù)鎖相的環(huán)路(phase tracking loop)和圖2.13的CDR工作原理類似。鑒相器陣列對(duì)輸入的串行數(shù)據(jù)與M個(gè)等相位間隔的時(shí)鐘進(jìn)行相位比較(也可能是在多個(gè)UI的跨度上),得到相位誤差信號(hào)。相位誤差信號(hào)送給數(shù)字濾波器。數(shù)字濾波器的性能會(huì)影響環(huán)路的帶寬,穩(wěn)定性,反應(yīng)速度等。經(jīng)數(shù)字濾波器平滑后的誤差信號(hào)送給VCO修正時(shí)鐘相位。最終環(huán)路鎖定時(shí),理論上相位誤差為零,90度偏移的時(shí)鐘作為恢復(fù)時(shí)鐘采樣串行輸入。

基于DPLL的CDR多了一個(gè)頻率跟蹤環(huán)路(Frequency Tracking Loop)。這是為了減小CDR的鎖定時(shí)間,減少對(duì)環(huán)路濾波器的設(shè)計(jì)約束。只有當(dāng)頻率跟蹤環(huán)路 鎖定后,才會(huì)切換到數(shù)據(jù)相位跟蹤環(huán)路。相位跟蹤環(huán)路失鎖時(shí),再自動(dòng)切換到頻率跟蹤環(huán)路。N倍參考時(shí)鐘(Reference Clock)頻率 和線路速率接近相等,因此兩個(gè)環(huán)路的VCO穩(wěn)態(tài)控制電壓是接近相等的。借助 頻率跟蹤環(huán)路,減小了 相位跟蹤環(huán)路 的捕獲時(shí)間。

相位跟蹤環(huán)路鎖定時(shí),頻率跟蹤環(huán)路不會(huì)影響相位環(huán)路。因此SerDes接收側(cè)對(duì)參考時(shí)鐘的抖動(dòng)沒有很高的要求。

基于相位插值器的CDR的參考時(shí)鐘可以是收發(fā)公用的PLL,也可以是每個(gè)通道獨(dú)立的PLL。這種結(jié)構(gòu)的參考時(shí)鐘抖動(dòng)會(huì)直接影響恢復(fù)時(shí)鐘的抖動(dòng)以及接收誤碼率。

2.4.1 鑒相器(PD)

鑒相器用來比較相位誤差,相位誤差以UP或者DN的信號(hào)表示, UP/DN持續(xù)的時(shí)間正比于相位誤差。一個(gè)bang-bang結(jié)構(gòu)鑒相器的例子如圖2.15。例子中只用了四個(gè)相位的恢復(fù)時(shí)鐘作為例子。

超詳細(xì):SerDes知識(shí)講解

2.4.2抽取器和濾波器

抽取器是為了讓濾波器在較低的頻率下工作。抽取的步長,平滑的方法都會(huì)影響環(huán)路的性能。數(shù)字濾波器有比例分支(Proportion)和積分分支(Integral)構(gòu)成,分別跟蹤相位誤差和頻率誤差。另外,數(shù)字濾波器的處理延時(shí)也不能太大,如果處理延時(shí)過大,就會(huì)導(dǎo)致環(huán)路不能跟蹤相位和頻率的快速變化,導(dǎo)致誤碼。

CDR的結(jié)構(gòu)不限于以上兩種,還有其他很多變種?;旧隙际且粋€(gè)鎖相環(huán)路。環(huán)路的跟隨性能,穩(wěn)定性(STABILITY),帶寬(bandwidth)/增益(gain)性能分析是一個(gè)非常學(xué)術(shù)的問題,用小信號(hào)線形模型分析,有非常多的書籍和資料解釋了環(huán)路的量化性能。CDR環(huán)路有一些的特點(diǎn)總結(jié)如下:

2.4.3 環(huán)路帶寬

1.頻率低于環(huán)路帶寬的相位抖動(dòng)會(huì)透過CDR轉(zhuǎn)移到恢復(fù)時(shí)鐘上。換句話說,頻率低于環(huán)路帶寬的抖動(dòng)可以被CDR跟蹤,不會(huì)引起誤碼。高頻的抖動(dòng)分量根據(jù)抖動(dòng)幅度的大小,可能會(huì)引起誤碼。

2.環(huán)路帶寬越大,鎖定時(shí)間越短,恢復(fù)時(shí)鐘的抖動(dòng)也越大。反之則鎖定時(shí)間越長,恢復(fù)時(shí)鐘的抖動(dòng)也越小。作為CDR,我們希望環(huán)路帶寬大一點(diǎn),這樣可以有更大的抖動(dòng)容忍能力,但是對(duì)于loop timing的應(yīng)用如SONET/SDH對(duì)恢復(fù)時(shí)鐘的抖動(dòng)有限制,又不能太大。

3. 開關(guān)電源的開關(guān)頻率一般小于環(huán)路帶寬,可以被CDR跟蹤。但是,一方面開關(guān)電源耦合到VCO(Digital to Multi-Phase Convertor)上的噪聲不能被環(huán)路跟蹤,低成本Ring VCO尤其對(duì)電源噪聲敏感。另一方面開關(guān)電源的諧波可能超出環(huán)路帶寬。

一些協(xié)議提供了CDR增益模板,如SDH/SONET。兼容這些協(xié)議需要計(jì)算輸入和輸出的抖動(dòng)預(yù)算。

2.5 ?公用鎖相環(huán)(PLL)

SerDes需要一個(gè)工作在數(shù)據(jù)波特率上的內(nèi)部時(shí)鐘,或者1/2數(shù)據(jù)波特率的內(nèi)部時(shí)鐘,工作在DDR模式。片外提供給SerDes的參考時(shí)鐘頻率遠(yuǎn)遠(yuǎn)低于數(shù)據(jù)波特率,PLL用來倍頻產(chǎn)生內(nèi)部高頻時(shí)鐘。

FPGA的SerDes PLL一般有8x,16x,10x,20x,40x模式,以支持常用的SerDes接口協(xié)議。比如PCIExpress工作在5Gbps,在40x模式下需要提供125MHz的片外參考時(shí)鐘,20x模式下需要提供250MHz的片外參考時(shí)鐘。

一個(gè)三階PLL電路如圖2.17,輸入信號(hào)的相位和VCO反饋信號(hào)的相位由鑒相器比較,相位誤差有charge pump轉(zhuǎn)化為電壓或電流信號(hào),經(jīng)過Loop Filter平滑后產(chǎn)生控制電壓,修正VCO的相位,最終使相位誤差趨于零。?

超詳細(xì):SerDes知識(shí)講解

PLL的工作過程分為入鎖過程和跟蹤過程。在入鎖過程,環(huán)路的模型可以用一個(gè)非線性微分方程表示,可以評(píng)估捕獲時(shí)間,捕獲帶寬等指標(biāo)。入鎖后,在小信號(hào)范圍內(nèi),PLL的模型是一個(gè)常系數(shù)線性方程,可以在拉普拉斯變換域研究PLL的帶寬,增益,穩(wěn)定性等性能, 圖2.18是小信號(hào)數(shù)學(xué)模型。

超詳細(xì):SerDes知識(shí)講解

PLL以傳輸函數(shù)極點(diǎn)(分母的根)個(gè)數(shù)命名環(huán)路的階數(shù)。VCO對(duì)相位有積分作用(Kvco/s),因此不帶濾波器的環(huán)路稱為一階環(huán)。帶一階濾波器的環(huán)路稱為二階環(huán)。一階環(huán)和二階環(huán)是無條件的穩(wěn)定系統(tǒng)。然而高階環(huán)路有更多的極點(diǎn)和零點(diǎn)可以獨(dú)立的調(diào)整帶款,增益,穩(wěn)定性,捕獲帶,捕捉時(shí)間等性能。

PLL的頻域傳輸函數(shù)特性主要有環(huán)路濾波器F(s)|s=jw決定, 一個(gè)通用的PLL頻域傳輸曲線如圖2.19所示。有兩個(gè)重要特征,環(huán)路帶款和jitter peaking。過大的peaking會(huì)放大jitter, 大的阻尼系數(shù)(damping factor)可以限制peaking, 但是會(huì)增加環(huán)路的如鎖時(shí)間, 影響滾降的速度和固有頻率(natural frequency)。

a) 當(dāng)環(huán)路鎖定后,固定相位差:Kdc為環(huán)路的直流開環(huán)增益,Δω為VCO中心頻率和受控頻率的差。對(duì)于charge pump passive filter結(jié)構(gòu)的PLL相位誤差為零。

b) 當(dāng)環(huán)路鎖定后,只有固定相位差,兩個(gè)輸入信號(hào)頻率相等。fr/M = fo/N

對(duì)于輸入端的噪聲,環(huán)路是一個(gè)低通濾波器,可以抑制高于環(huán)路截止頻率的噪聲或干擾。作為SerDes的PLL, 希望帶寬的小一些,以抑制參考時(shí)鐘上的干擾和噪聲。

對(duì)于VCO噪聲,環(huán)路是一個(gè)高通濾波器的作用。只有低于環(huán)路截止頻率的VCO噪聲得到了抑制。過量的VCO高頻噪聲會(huì)惡化時(shí)鐘的抖動(dòng)。低速SerDes(<5Gbps)的VCO出于成本考慮采用Ring結(jié)構(gòu)的VCO,噪聲大且對(duì)電源敏感。高速SerDes的VCO采用噪聲小較小的LC結(jié)構(gòu)VCO。


03

抖動(dòng)和信號(hào)集成( Jitter, SI )


抖動(dòng)是指信號(hào)的跳邊時(shí)刻偏離其理想(ideal)或者預(yù)定(expected)時(shí)刻的現(xiàn)象。噪聲,非理想的信道,非理想的電路都是產(chǎn)生抖動(dòng)的原因。

3.1?時(shí)鐘的抖動(dòng)(clock jitter)

超詳細(xì):SerDes知識(shí)講解Figure 3.1 ?Clock Jitter對(duì)于時(shí)鐘信號(hào),根據(jù)應(yīng)用場景的不同,對(duì)抖動(dòng)的定義也不一樣。比如數(shù)字邏輯計(jì)算時(shí)序余量的時(shí)候,關(guān)心的是周期抖動(dòng)。而時(shí)鐘設(shè)計(jì)人員更喜歡相位抖動(dòng),因?yàn)榭梢岳妙l譜評(píng)估相位抖動(dòng),并可以用頻譜來評(píng)估具體的干擾對(duì)總相位抖動(dòng)的貢獻(xiàn)。參考圖3.1,介紹一下幾種抖動(dòng)的定義。

  • ?相位抖動(dòng)(phase jitter)

Jphase(n)= tn – n*T。理想時(shí)鐘的每個(gè)周期T都是相等的,沒有抖動(dòng)。真實(shí)時(shí)鐘的跳邊沿相對(duì)于理想時(shí)鐘的偏離稱作相位抖動(dòng)。

  • 周期抖動(dòng)(period jitter)

?Jperiod(n)= (tn- tn-1)– T。周期抖動(dòng)是實(shí)際時(shí)鐘的周期相對(duì)于理想周期的偏離(deviation)。顯然Jperiod(n) = Jphase(n) - Jphase(n-1)。

l? Cycle-to-Cycle jitter

Jcycle(n) = (tn- tn-1) - (tn-1- tn-2)。前后相鄰的兩個(gè)周期的偏差是Cycle-Cycle抖動(dòng)。顯然Jcycle(n)= Jperiod(n) – Jperiod(n-1)。

假設(shè)相位抖動(dòng)的最大值為? /-Jp,?而且抖動(dòng)的頻率fjitter?= 0.5fclock?= 0.5/T,也就是,

tn-2時(shí)刻的相位抖動(dòng)為最大值 Jp?,tn-1時(shí)刻的相位抖動(dòng)為最小值-Jp

tn時(shí)刻的相位抖動(dòng)為最大值 Jp?,?tn 1時(shí)刻的相位抖動(dòng)為最小值-Jp

那么,周期抖動(dòng)最大值??????? Jperiod= /- 2* Jp

那么,Cycle-Cycle抖動(dòng)最大值? Jcycle??= /- 4* Jp3.2.?數(shù)據(jù)的抖動(dòng)(data jitter)

在高速SerDes領(lǐng)域每個(gè)人都在說抖動(dòng),因?yàn)槎秳?dòng)直接和誤碼率(BER)相關(guān)。

SerDes發(fā)送端的一個(gè)重要要求是抖動(dòng)(jitter generation)—-針對(duì)特定的碼型(pattern),速率和負(fù)載情況下,發(fā)送端所生成的抖動(dòng)。

信號(hào)經(jīng)過信道(channel)到達(dá)接收端時(shí),又會(huì)進(jìn)一步放大抖動(dòng),不同的碼型(pattern)包含的頻率成分也不一樣,信道對(duì)不同頻率成分的傳輸延時(shí)也不一樣(非線性相位), 產(chǎn)生和數(shù)據(jù)pattern相關(guān)的確定性抖動(dòng)。阻抗不連續(xù)產(chǎn)生的反射,相鄰信號(hào)的串?dāng)_和噪聲都會(huì)引起數(shù)據(jù)抖動(dòng)。

SerDes接收端的一個(gè)重要指標(biāo)是抖動(dòng)容忍能力(Jitter Tolerance)—-針對(duì)特定的碼型和誤碼率要求(BER<10-12),SerDes接收端能夠容忍的抖動(dòng)大小。對(duì)抖動(dòng)評(píng)估時(shí),會(huì)使用眼圖(eye-diagram),浴缸曲線(bath curve),抖動(dòng)分布柱狀圖(PDF),抖動(dòng)頻譜(jitter spectrum)等圖形手段。

有一點(diǎn)需要說明,在談?wù)摳咚賁erDes的數(shù)據(jù)抖動(dòng)時(shí)(Tj,Rj,Dj etc.),是不包括低頻率抖動(dòng)的。這是因?yàn)榈皖l率的抖動(dòng)被認(rèn)為是一種wander,可以被CDR跟蹤,不會(huì)引起誤碼。在用示波器(SDA)測量數(shù)據(jù)抖動(dòng)的時(shí)候,可以設(shè)置示波器內(nèi)嵌的CDR環(huán)路帶寬,示波器測量的抖動(dòng)數(shù)據(jù)已經(jīng)濾掉了低頻抖動(dòng)。

根據(jù)抖動(dòng)產(chǎn)生的原因和概率密度函數(shù),常常將抖動(dòng)分為幾類。對(duì)抖動(dòng)進(jìn)行分類的意義在于某些類型的抖動(dòng)可以被校正,而其他類型的不能被校正。經(jīng)典的,總抖動(dòng)Tj(Total Jitter)被分類為確定性抖動(dòng)Dj (deterministic jitter)和隨機(jī)抖動(dòng)Rj (random jitter)。抖動(dòng)以UI或者ps為單位,可以是均方根值,或者峰峰值。

3.2.1 Dj

Dj被進(jìn)一步細(xì)分:

DCD(Duty cycle distortion) ??占空比失真抖動(dòng)。差分信號(hào)的正端負(fù)端的偏置電壓不一致,或者上升沿和下降沿時(shí)間不一致會(huì)導(dǎo)致占空比失真。因?yàn)镈CD和數(shù)據(jù)pattern相關(guān),是可以被校正的抖動(dòng)。

DDJ(Data dependent jitter) ??數(shù)據(jù)碼型相關(guān)的抖動(dòng),也稱?碼間干擾ISI(intersymbol interference)。DDJ是由于不理想的信道導(dǎo)致。是可以被均衡器校正的抖動(dòng)。

Pj(Periodic jitter) ??周期性抖動(dòng)。Pj由電路上周期性干擾源導(dǎo)致。比如開關(guān)電源的開關(guān)頻率,時(shí)鐘信號(hào)的串?dāng)_等。雖然電源的開關(guān)頻率一般在CDR的跟蹤范圍內(nèi),但是低次諧波成分可能會(huì)落在環(huán)路帶寬外,或者jitter peaking區(qū)域, 更重要的是電源諧波對(duì)CDR內(nèi)VCO的干擾是不能被抑制和跟蹤的,所以對(duì)于基于Ring VCO的CDR一定要盡可能的使用LDO供電。Pj不能被均衡器校正.

BUJ(Bounded uncorrelated jitter) ? BUJ由非時(shí)鐘的干擾源引起。如果干擾源aggressor和victim是異步的,抖動(dòng)的概率分布為有界的高斯分布,此時(shí)也稱作CBGJ(Correlated Bounded Gaussian Jitter)。BUJ/CBGJ不能被校正。

3.2.2 Rj

Rj有半導(dǎo)體本身的噪聲引起,一個(gè)重要特征就是Rj的概率密度函數(shù)是高斯分布的,沒有邊界,且和數(shù)據(jù)pattern無關(guān)。只有在一定誤碼率約束下,才可以被認(rèn)為是有界的。

3.2.3 Tj

數(shù)學(xué)意義上,抖動(dòng)的概率分布函數(shù)可以近視為高斯分布和雙底拉克分布的卷積。

對(duì)高斯分布有貢獻(xiàn)的抖動(dòng)為:

  • Rj為高斯分布
  • 大量Pj疊加的效果也為高斯分布
  • 部分BUJ也為高斯分布
對(duì)雙底拉克分布有貢獻(xiàn)的抖動(dòng)為:

  • ?DCD被近視為雙底拉克概率分布
高斯分布和雙底拉克分布的卷積:超詳細(xì):SerDes知識(shí)講解其中,W被認(rèn)為是確定性抖動(dòng)的峰峰值,δ是高斯分布的均方差。見圖3.2, 可以看到,隨著確定性抖動(dòng)W的增加,概率密度分布曲線的頂部出現(xiàn)了雙峰。一般來講頂部曲線反映了確定性抖動(dòng)的大小程度。
超詳細(xì):SerDes知識(shí)講解把一個(gè)UI內(nèi)的兩個(gè)跳變沿處(0 UI處和1UI處)的概率分布函數(shù)放在一張圖中,就是抖動(dòng)的浴缸曲線(bathtub curve)。因?yàn)閷?duì)數(shù)的寬動(dòng)態(tài)范圍,Y坐標(biāo)以對(duì)數(shù)顯示。圖3.3為確定性抖動(dòng)W=0.05UI, 高斯抖動(dòng)方差0.05UI的浴缸曲線。

超詳細(xì):SerDes知識(shí)講解

浴缸曲線還會(huì)標(biāo)出對(duì)應(yīng)的誤碼率BER坐標(biāo),比如圖中BER=10^-12的峰峰值抖動(dòng)為Tj(p-p)=0.373*2 = 0.746 UI。曲線下面的面積占總面積的比率就是誤碼率。比如圖中,

超詳細(xì):SerDes知識(shí)講解

浴缸曲線的頂部主要為確定性抖動(dòng)Dj的貢獻(xiàn),越靠近底部,高斯抖動(dòng)的貢獻(xiàn)越大,并以高斯曲線的斜率衰減,也因此常利用高斯分布的特性進(jìn)行估算。下表為高斯分布和

超詳細(xì):SerDes知識(shí)講解

均方差關(guān)系。?? ??

超詳細(xì):SerDes知識(shí)講解

在規(guī)定的BER內(nèi),利用該表可以快速估算均方差值和峰峰值之間的關(guān)系。比如高斯抖動(dòng)的均方根0.05UI,誤碼率要求為10^-12 BER,查表可知Q=7,那么高斯抖動(dòng)的峰峰值要求是0.05UI*7*2 = 0.7UI。

如前所述,W=0.05UI,Rj=0.05UI計(jì)算出的總抖動(dòng)Tj=0.746UI;

利用高斯特性估算的高斯抖動(dòng)為0.7UI。

如果按Tj = Rj(0.7UI) Dj(0.05UI)計(jì)算得到0.75U,基本是一致的,差異是因?yàn)楫媹D程序有量化誤差。


04

信號(hào)集成(SI)及仿真


4.1信道channel

SerDes信道關(guān)注的頻率范圍是0Hz到奈奎斯特頻率,也就是2倍的信號(hào)基頻。信號(hào)的基頻是信號(hào)線速率的一半,也就是說,信號(hào)的奈奎斯特頻率就是線速率。

道對(duì)信號(hào)的損傷包括插入損失(insertion loss),反射?(reflection),串?dāng)_(crosstalk)等。這些損傷可以用S-parameter信道模型來表達(dá)。S-parameter可以有矢量網(wǎng)絡(luò)分析儀測量(Vector Network Analyzer)得到。信道不是一個(gè)純阻性網(wǎng)絡(luò),還包括容性和感性。這樣,對(duì)不同頻率里成分的時(shí)延也不一樣,從而產(chǎn)生和data pattern相關(guān)的抖動(dòng)。

信道上的每一個(gè)不連續(xù)阻抗點(diǎn)都會(huì)產(chǎn)生反射,根據(jù)反位置的不同,反射信號(hào)會(huì)以不同的相位疊加在原始信號(hào)上,增加或者減小信號(hào)的幅度。

SerDes信號(hào)為差分形式,對(duì)共模干擾有較強(qiáng)的抑制。如果在 /-端上的干擾有差異,就會(huì)引入串?dāng)_。通常外部PCB可以保證SerDes數(shù)據(jù)和干擾源保持足夠的距離,但是芯片內(nèi)部由于考慮到經(jīng)濟(jì)性,很難保證SerDes信號(hào)和干擾源足夠的隔離距離,尤其是一個(gè)通道自己的發(fā)送信號(hào)干擾自己的接收信號(hào)。

4.2?芯片封裝Package

封裝package也是信道的一部分。芯片外部的信道可以通過VNA測量的到,而封裝的S-parameter通常有芯片制造商提供,仿真時(shí)可以把兩者級(jí)聯(lián)起來。封裝package由于距離較短,insertion loss通常不是主要問題,主要考慮的是阻抗匹配問題。

4.3 SI仿真

信號(hào)集成性(SI)仿真可以通過把SerDes發(fā)送端SPICE模型,封裝和信道的S-parameter模型,接收端SPICE模型級(jí)聯(lián)起來搭建仿真平臺(tái),利用仿真工具對(duì)不同的激勵(lì)在不同的測試條件作電路仿真。通過測量SerDes接收端的眼圖來評(píng)估是否滿足設(shè)計(jì)需求。也可以通過實(shí)測接收端眼圖,檢驗(yàn)是否滿足接收端的眼圖模板,或者協(xié)議規(guī)定的眼圖模板。圖4.1為一個(gè)實(shí)測的3.125Gbps信號(hào)的眼圖及模板,同時(shí)也包含了浴缸曲線和統(tǒng)計(jì)圖。

對(duì)于高速SerDes(>5Gbps),這種傳統(tǒng)的電路仿真方法已經(jīng)不能滿足設(shè)計(jì)的需求。首先,過量的碼間干擾ISI導(dǎo)致接收端眼圖完全閉合,但是通過芯片內(nèi)的DFE均衡后,眼圖可能是很好的。其次,電路仿真(SPICE)的速度非常慢,即使是有辦法把DFE均衡加入仿真,由于DFE仿真需要足夠長時(shí)間的bits來訓(xùn)練,此時(shí),電路仿真的仿真時(shí)間是不可接受的。

對(duì)于高速SerDes的仿真需要借助統(tǒng)計(jì)分析?(statistical analysis)?的方法。統(tǒng)計(jì)分析的方法把發(fā)送端-信道-接收端的連接近視為線性系統(tǒng),計(jì)算系統(tǒng)脈沖響應(yīng)h(t),加入噪聲源來模擬抖動(dòng),然后用激勵(lì)對(duì)脈沖響應(yīng)進(jìn)行卷積,得到接收端的信號(hào),這種方法可以把廠家私有的FFE,DFE自適應(yīng)算法加入仿真。

統(tǒng)計(jì)分析?(statistical analysis)方法不能仿真電路的非線性和時(shí)變特性,所以高速SerDes往往要兩者結(jié)合起來仿真SI。更多關(guān)于統(tǒng)計(jì)分析?(statistical analysis)方法可以參考。

05

結(jié)尾


有人講過,現(xiàn)在的汽車是如此復(fù)雜,以至于雖然每一個(gè)零件都有人懂,但是合起來作為整車卻沒人能夠全懂。近些年來,F(xiàn)PGA變的越來越復(fù)雜,對(duì)工程師的要求也越來越高。要成為一個(gè)合格的FPGA應(yīng)用工程師,不僅要擅長數(shù)字電路的設(shè)計(jì),還要懂得高速SerDes, 信號(hào)集成SI, DSP算法, 多核CPU, 嵌入式操作系統(tǒng)等。每一項(xiàng)技術(shù)背后都是一個(gè)專業(yè)領(lǐng)域,一個(gè)人不會(huì)在每一個(gè)領(lǐng)域內(nèi)都是專家,只要比別人多學(xué)習(xí)一點(diǎn),關(guān)鍵時(shí)候就會(huì)突出你的價(jià)值。本篇主要介紹了SerDes的基本結(jié)構(gòu)和用好SerDes需要掌握一些的知識(shí),希望對(duì)你的工作有所幫助。


來源:高速射頻百花潭版權(quán)歸原作者所有,如有侵權(quán),請(qǐng)聯(lián)系刪除。

21ic電子網(wǎng)

掃描二維碼,關(guān)注更多精彩內(nèi)容

本站聲明: 本文章由作者或相關(guān)機(jī)構(gòu)授權(quán)發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點(diǎn),本站亦不保證或承諾內(nèi)容真實(shí)性等。需要轉(zhuǎn)載請(qǐng)聯(lián)系該專欄作者,如若文章內(nèi)容侵犯您的權(quán)益,請(qǐng)及時(shí)聯(lián)系本站刪除。
關(guān)閉
關(guān)閉