卡爾曼濾波(Kalman filtering)是一種利用線性系統(tǒng)狀態(tài)方程,通過系統(tǒng)輸入輸出觀測數(shù)據(jù),對系統(tǒng)狀態(tài)進行最優(yōu)估計的算法。由于觀測數(shù)據(jù)中包括系統(tǒng)中的噪聲和干擾的影響,所以最優(yōu)估計也可看作是濾波過程。數(shù)據(jù)濾波是去除噪聲還原真實數(shù)據(jù)的一種數(shù)據(jù)處理技術,Kalman濾波在測量方差已知的情況下能夠從一系列存在測量噪聲的數(shù)據(jù)中,估計動態(tài)系統(tǒng)的狀態(tài)。由于它便于計算機編程實現(xiàn),并能夠?qū)ΜF(xiàn)場采集的數(shù)據(jù)進行實時的更新和處理,Kalman濾波是目前應用最為廣泛的濾波方法,在通信,導航,制導與控制等多領域得到了較好的應用。斯坦利·施密特(Stanley Schmidt)首次實現(xiàn)了卡爾曼濾波器??柭贜ASA埃姆斯研究中心訪問時,發(fā)現(xiàn)他的方法對于解決阿波羅計劃的軌道預測很有用,后來阿波羅飛船的導航電腦使用了這種濾波器。關于這種濾波器的論文由Swerling (1958), Kalman (1960)與 Kalman and Bucy (1961)發(fā)表。
定義 語音傳統(tǒng)的濾波方法,只能是在有用信號與噪聲具有不同頻帶的條件下才能實現(xiàn).20世紀40年代,N.維納和A.H.柯爾莫哥羅夫把信號和噪聲的統(tǒng)計性質(zhì)引進了濾波理論,在假設信號和噪聲都是平穩(wěn)過程的條件下,利用最優(yōu)化方法對信號真值進行估計,達到濾波目的,從而在概念上與傳統(tǒng)的濾波方法聯(lián)系起來,被稱為維納濾波。這種方法要求信號和噪聲都必須是以平穩(wěn)過程為條件。60年代初,卡爾曼(R.E.Kalman)和布塞(R. S.Bucy)發(fā)表了一篇重要的論文《線性濾波和預測 理論的新成果》,提出了一種新的線性濾波和預測理論,被稱之為卡爾曼濾波。特點是在線性狀態(tài)空間表示的基礎上對有噪聲的輸入和觀測信號進行處理,求取系統(tǒng)狀態(tài)或真實信號。這種理論是在時間域上來表述的,基本的概念是:在線性系統(tǒng)的狀態(tài)空間表示基礎上,從輸出和輸入觀測數(shù)據(jù)求系統(tǒng)狀態(tài)的最優(yōu)估計。這里所說的系統(tǒng)狀態(tài),是總結(jié)系統(tǒng)所有過去的輸入和擾動對系統(tǒng)的作用的最小參數(shù)的集合,知道了系統(tǒng)的狀態(tài)就能夠與未來的輸入與系統(tǒng)的擾動一起確定系統(tǒng)的整個行為??柭鼮V波不要求信號和噪聲都是平穩(wěn)過程的假設條件。對于每個時刻的系統(tǒng)擾動和觀測誤差(即噪聲),只要對它們的統(tǒng)計性質(zhì)作某些適當?shù)募俣ǎㄟ^對含有噪聲的觀測信號進行處理,就能在平均的意義上,求得誤差為最小的真實信號的估計值。因此,自從卡爾曼濾波理論問世以來,在通信系統(tǒng)、電力系統(tǒng)、航空航天、環(huán)境污染控制、工業(yè)控制、雷達信號處理等許多部門都得到了應用,取得了許多成功應用的成果。例如在圖像處理方面,應用卡爾曼濾波對由于某些噪聲影響而造成模糊的圖像進行復原。在對噪聲作了某些統(tǒng)計性質(zhì)的假定后,就可以用卡爾曼的算法以遞推的方式從模糊圖像中得到均方差最小的真實圖像,使模糊的圖像得到復原。
性質(zhì)①卡爾曼濾波是一個算法,它適用于線性、離散和有限維系統(tǒng)。每一個有外部變量的自回歸移動平均系統(tǒng)(ARMAX)或可用有理傳遞函數(shù)表示的系統(tǒng)都可以轉(zhuǎn)換成用狀態(tài)空間表示的系統(tǒng),從而能用卡爾曼濾波進行計算。②任何一組觀測數(shù)據(jù)都無助于消除x(t)的確定性。增益K(t)也同樣地與觀測數(shù)據(jù)無關。③當觀測數(shù)據(jù)和狀態(tài)聯(lián)合服從高斯分布時用卡爾曼遞歸公式計算得到的是高斯隨機變量的條件均值和條件方差,從而卡爾曼濾波公式給出了計算狀態(tài)的條件概率密度的更新過程線性最小方差估計,也就是最小方差估計。
形式卡爾曼濾波已經(jīng)有很多不同的實現(xiàn),卡爾曼最初提出的形式一般稱為簡單卡爾曼濾波器。除此以外,還有施密特擴展濾波器、信息濾波器以及很多Bierman, Thornton 開發(fā)的平方根濾波器的變種。最常見的卡爾曼濾波器是鎖相環(huán),它在收音機、計算機和幾乎任何視頻或通訊設備中廣泛存在。