當(dāng)前位置:首頁 > 電源 > 電源
[導(dǎo)讀]僅一個(gè)電池可能無法為復(fù)雜系統(tǒng)提供正常工作所需的所有電壓軌。汽車 LED 驅(qū)動(dòng)器、音頻放大器以及電信等應(yīng)用需要升壓轉(zhuǎn)換器將較低輸入電壓轉(zhuǎn)換為較高輸出電壓。要確定應(yīng)該將

僅一個(gè)電池可能無法為復(fù)雜系統(tǒng)提供正常工作所需的所有電壓軌。汽車 LED 驅(qū)動(dòng)器、音頻放大器以及電信等應(yīng)用需要升壓轉(zhuǎn)換器將較低輸入電壓轉(zhuǎn)換為較高輸出電壓。要確定應(yīng)該將轉(zhuǎn)換器的工作模式設(shè)計(jì)成連續(xù)傳導(dǎo)模式 (CCM)、非連續(xù)傳導(dǎo)模式 (DCM) 還是二者的結(jié)合,這對(duì)于升壓轉(zhuǎn)換器設(shè)計(jì)人員來說可能不太明確。

升壓轉(zhuǎn)換器的形狀和尺寸多種多樣,所支持的電源等級(jí)和升壓比率非常廣泛。這些要求決定了升壓轉(zhuǎn)換器最適合在 CCM 下工作,還是在 DCM 下工作。在 DCM 下,電感器電流在 FET 導(dǎo)通時(shí)開始從零升高,并在下一個(gè)轉(zhuǎn)換周期到來之前完全放電歸零。但在非同步 CCM 升壓情況下,無論電流是在升高、在下降,還是在將電感器儲(chǔ)存的能量釋放到輸出電容器和負(fù)載中,電感器電流始終大于零。

在 CCM 下,占空比對(duì)負(fù)載而言是恒定的,但會(huì)隨輸入電壓變化而變化。在大多數(shù) CCM 設(shè)計(jì)中,當(dāng)?shù)陀谀骋蛔畹拓?fù)載時(shí),工作模式會(huì)轉(zhuǎn)換為 DCM,因?yàn)殡姼衅麟娏髟谙乱粋€(gè)轉(zhuǎn)換周期到來之前最終會(huì)降低至零。

在大多數(shù)情況下,高功率升壓轉(zhuǎn)換器工作在 CCM 下,而低功率升壓則在 DCM 下完成。這是因?yàn)?CCM 允許較低峰值電流流過整個(gè)電路,通常會(huì)帶來較低電路損耗。但可能在高電壓升壓轉(zhuǎn)換的輸出整流器中也有例外,例如在 PFC 中,反向恢復(fù)電流會(huì)導(dǎo)致更多損耗。這種損耗通常可采用高質(zhì)量(快速)整流器進(jìn)行處理。

如果在 DCM 下工作,會(huì)出現(xiàn)在 CCM 模式下兩倍的峰值電感器電流,但如果故意減小電感值,則該電流可能還會(huì)高很多。這些更高電流不僅可增大輸入輸出電容器中的均方根電流,而且還可增加 FET 中的開關(guān)損耗,因此需要更大(或更多)的組件來應(yīng)對(duì)附加應(yīng)力。單這一項(xiàng)不足通常就能掩蓋 DCM 在高功率下提供的其它優(yōu)勢(shì)。

盡管電感器均方根電流在 DCM 下更高,但其線阻通常會(huì)低很多,因此銅損耗往往與 CCM 相同或更低。不過,DCM 下的核心損耗在高功率等級(jí)下更大。有時(shí)候可能需要更大的核心來處理這些增加的損耗,這會(huì)使經(jīng)常讓人振奮的“更小電感器尺寸”優(yōu)勢(shì)黯然失色。DCM 能真正發(fā)揮優(yōu)勢(shì)的地方是較低功率等級(jí),這里電容器和 FET 中增加的應(yīng)力不一定需要較大組件,采用較小電感器即可。

DCM 的一個(gè)額外優(yōu)勢(shì)是在以高升壓比率工作時(shí)(此時(shí) CCM 工作需要大量的導(dǎo)通時(shí)間),可通過減小電感值來縮短導(dǎo)通時(shí)間(伴有更高峰值電流)。這非常好,因?yàn)榭刂破鹘?jīng)常會(huì)達(dá)到最大可控制導(dǎo)通時(shí)間(或最小關(guān)斷時(shí)間)限值,跳過脈沖。這樣,設(shè)計(jì)人員可根據(jù)控制器的可工作范圍對(duì)導(dǎo)通和關(guān)斷時(shí)間進(jìn)行微調(diào)。此外,DCM 的控制環(huán)路表現(xiàn)要優(yōu)于 CCM,因?yàn)闆]有右半平面零點(diǎn),其可轉(zhuǎn)換為優(yōu)異的瞬態(tài)性能。

有時(shí)候可通過減小電感值將 RHPZ 的影響降到最低,我們可將 RHPZ 推到影響較小的更高頻率位置。無論在輕負(fù)載、啟動(dòng)還是在瞬態(tài)條件下,所有 CCM 升壓都可在一定條件下以 DCM 模式工作。這完全可以接受,但應(yīng)該搞清楚出現(xiàn)這種情況時(shí)的條件。

圖 1 是電感方程式(方程 1)中反向升壓比率 (VIN/VOUT) 與占空比 (D×(1-D)²) 的比較圖。該項(xiàng)目與 CCM 升壓轉(zhuǎn)換器中所需的電感成正比。本圖中的峰值出現(xiàn)在 VIN/VOUT 比值為 2/3 時(shí)或升壓比率 (VOUT/VIN) 為 1.5[1] 時(shí)。這可能是有些不太直觀的結(jié)果。它的意思是,在采用變化輸入電壓的設(shè)計(jì)中,電路必須在 VIN/VOUT 比率的一個(gè)區(qū)段間工作。如果該范圍非常廣泛而且該區(qū)段包含圖 1 中的峰值,那就應(yīng)該在 2/3 的 VIN/VOUT 比率位置計(jì)算電感。如果該區(qū)段不包含 2/3 點(diǎn),那它就應(yīng)該在其相對(duì)峰值比率處進(jìn)行設(shè)計(jì)。

圖 1.CCM 所需的最大電感出現(xiàn)在 VIN/VOUT = 2/3 時(shí)

方程 1

圖 2 是汽車 LED 驅(qū)動(dòng)器應(yīng)用,其采用控制器調(diào)節(jié)輸出電流,而不是固定輸出電壓。該設(shè)計(jì)電路在 0.27 至 0.97 的區(qū)段間工作,如圖 1 中虛線所示。應(yīng)在 2/3 的比率位置計(jì)算其電感。LED 負(fù)載電流是恒定的,因此要選擇所需的電感,就得選擇低于實(shí)際負(fù)載電流的設(shè)計(jì)負(fù)載電流。只要實(shí)際負(fù)載電流大于這一所選等級(jí),轉(zhuǎn)換器就會(huì)在 CCM 下工作。

[!--empirenews.page--]

圖 2.LED 升壓轉(zhuǎn)換器設(shè)計(jì)示例始終在 CCM 下工作,負(fù)載恒定

在本示例中,LED 電流為 0.22A,選擇了 0.15A 的臨界傳導(dǎo)等級(jí),這就意味著轉(zhuǎn)換器應(yīng)始終在 CCM 下工作。該等級(jí)可在最大限度降低所需電感與確保 CCM 工作之間實(shí)現(xiàn)良好平衡。對(duì)于該設(shè)計(jì),這相當(dāng)于是 68uH 的計(jì)算所得電感。要證實(shí)該電感是否正確,可將圖 [2] 的 D(1-D)2 項(xiàng)指定為常數(shù) K。將該常數(shù)代入方程 1 并進(jìn)行計(jì)算,可通過方程 2 計(jì)算出 K 值。我們可使用 K 的計(jì)算值來確定工作邊界。

方程 2

圖 3 與圖 1 相比稍有不同,橫坐標(biāo)變成了占空比,而不是原來的 VIN/VOUT。圖中顯示了設(shè)計(jì)示例(采用 68uH 電感器)的 K 計(jì)算值以及 0.15A 的降低負(fù)載電流。我們可以看到,電路工作一直處于該曲線上方,這說明在所有輸出電壓下電路將始終在 CCM 下工作。但電路實(shí)際可將電流調(diào)節(jié)為 0.22A,因此 K 的典型值接近 0.23。這明顯高于該曲線而且更加深入 CCM,因此可提供所需的裕量。

圖 3.占空比可影響升壓轉(zhuǎn)換器的工作模式

正如另一個(gè)可形象展示意外工作情況的設(shè)計(jì)點(diǎn)示例所示,必須考慮在改用 33uH 電感器時(shí)會(huì)出現(xiàn)的情況。如果該值通過 VIN 最大值或 VIN 最小值計(jì)算,而不是通過與圖 1 峰值有關(guān)的 VIN 計(jì)算,就可對(duì)其進(jìn)行選擇。由于電感為 33uH,因此 K 的對(duì)應(yīng)值等于 0.11,如圖 3 所示。在 0.16 與 0.55(分別對(duì)應(yīng) 28VIN 和 15VIN)的工作占空比之間,電路會(huì)無意間工作在 DCM 下,而在這些占空比以外則工作在 CCM 下。由于兩種模式具有不同的控制環(huán)路特征,因此如果在多種模式下工作可能會(huì)導(dǎo)致適當(dāng)?shù)牟环€(wěn)定性。

升壓轉(zhuǎn)換器可在 CCM、DCM 或這兩種模式下工作,主要取決于輸入電壓和負(fù)載。在計(jì)算所需的電感以確保 CCM 工作時(shí),必須知道計(jì)算中使用的輸入電壓(或占空比)值。對(duì)于具有寬泛輸入的設(shè)計(jì)而言,應(yīng)使用 2/3 的 VIN/VOUT 比率 (D = 0.33)。現(xiàn)有設(shè)計(jì)可使用方程 2 計(jì)算出的 K 值通過 D(1-D)² 曲線確定工作模式。通過正確調(diào)整電感器尺寸,可以避免意外問題發(fā)生,并能更好地掌握升壓轉(zhuǎn)換器正工作在哪種或哪幾種模式下。

John Betten 是德州儀器的應(yīng)用工程師,也是 TI 科技委員會(huì)的資深委員,擁有超過 28 年的 AC/DC 及 DC/DC 電源轉(zhuǎn)換設(shè)計(jì)經(jīng)驗(yàn)。John 畢業(yè)于匹茲堡大學(xué),獲電子工程學(xué)士學(xué)位,是IEEE 會(huì)員。

本站聲明: 本文章由作者或相關(guān)機(jī)構(gòu)授權(quán)發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點(diǎn),本站亦不保證或承諾內(nèi)容真實(shí)性等。需要轉(zhuǎn)載請(qǐng)聯(lián)系該專欄作者,如若文章內(nèi)容侵犯您的權(quán)益,請(qǐng)及時(shí)聯(lián)系本站刪除。
換一批
延伸閱讀

9月2日消息,不造車的華為或?qū)⒋呱龈蟮莫?dú)角獸公司,隨著阿維塔和賽力斯的入局,華為引望愈發(fā)顯得引人矚目。

關(guān)鍵字: 阿維塔 塞力斯 華為

倫敦2024年8月29日 /美通社/ -- 英國汽車技術(shù)公司SODA.Auto推出其旗艦產(chǎn)品SODA V,這是全球首款涵蓋汽車工程師從創(chuàng)意到認(rèn)證的所有需求的工具,可用于創(chuàng)建軟件定義汽車。 SODA V工具的開發(fā)耗時(shí)1.5...

關(guān)鍵字: 汽車 人工智能 智能驅(qū)動(dòng) BSP

北京2024年8月28日 /美通社/ -- 越來越多用戶希望企業(yè)業(yè)務(wù)能7×24不間斷運(yùn)行,同時(shí)企業(yè)卻面臨越來越多業(yè)務(wù)中斷的風(fēng)險(xiǎn),如企業(yè)系統(tǒng)復(fù)雜性的增加,頻繁的功能更新和發(fā)布等。如何確保業(yè)務(wù)連續(xù)性,提升韌性,成...

關(guān)鍵字: 亞馬遜 解密 控制平面 BSP

8月30日消息,據(jù)媒體報(bào)道,騰訊和網(wǎng)易近期正在縮減他們對(duì)日本游戲市場(chǎng)的投資。

關(guān)鍵字: 騰訊 編碼器 CPU

8月28日消息,今天上午,2024中國國際大數(shù)據(jù)產(chǎn)業(yè)博覽會(huì)開幕式在貴陽舉行,華為董事、質(zhì)量流程IT總裁陶景文發(fā)表了演講。

關(guān)鍵字: 華為 12nm EDA 半導(dǎo)體

8月28日消息,在2024中國國際大數(shù)據(jù)產(chǎn)業(yè)博覽會(huì)上,華為常務(wù)董事、華為云CEO張平安發(fā)表演講稱,數(shù)字世界的話語權(quán)最終是由生態(tài)的繁榮決定的。

關(guān)鍵字: 華為 12nm 手機(jī) 衛(wèi)星通信

要點(diǎn): 有效應(yīng)對(duì)環(huán)境變化,經(jīng)營業(yè)績(jī)穩(wěn)中有升 落實(shí)提質(zhì)增效舉措,毛利潤率延續(xù)升勢(shì) 戰(zhàn)略布局成效顯著,戰(zhàn)新業(yè)務(wù)引領(lǐng)增長 以科技創(chuàng)新為引領(lǐng),提升企業(yè)核心競(jìng)爭(zhēng)力 堅(jiān)持高質(zhì)量發(fā)展策略,塑強(qiáng)核心競(jìng)爭(zhēng)優(yōu)勢(shì)...

關(guān)鍵字: 通信 BSP 電信運(yùn)營商 數(shù)字經(jīng)濟(jì)

北京2024年8月27日 /美通社/ -- 8月21日,由中央廣播電視總臺(tái)與中國電影電視技術(shù)學(xué)會(huì)聯(lián)合牽頭組建的NVI技術(shù)創(chuàng)新聯(lián)盟在BIRTV2024超高清全產(chǎn)業(yè)鏈發(fā)展研討會(huì)上宣布正式成立。 活動(dòng)現(xiàn)場(chǎng) NVI技術(shù)創(chuàng)新聯(lián)...

關(guān)鍵字: VI 傳輸協(xié)議 音頻 BSP

北京2024年8月27日 /美通社/ -- 在8月23日舉辦的2024年長三角生態(tài)綠色一體化發(fā)展示范區(qū)聯(lián)合招商會(huì)上,軟通動(dòng)力信息技術(shù)(集團(tuán))股份有限公司(以下簡(jiǎn)稱"軟通動(dòng)力")與長三角投資(上海)有限...

關(guān)鍵字: BSP 信息技術(shù)
關(guān)閉
關(guān)閉