開關(guān)電源設(shè)計(jì)及過程概述
掃描二維碼
隨時(shí)隨地手機(jī)看文章
一、概論
開關(guān)電源是利用現(xiàn)代電力電子技術(shù),控制開關(guān)管開通和關(guān)斷的時(shí)間比率,維持穩(wěn)定輸出電壓的一種電源,開關(guān)電源一般由脈沖寬度調(diào)制(PWM)控制IC和MOSFET構(gòu)成。開關(guān)電源和線性電源相比,二者的成本都隨著輸出功率的增加而增長,但二者增長速率各異。線性電源成本在某一輸出功率點(diǎn)上,反而高于開關(guān)電源,這一點(diǎn)稱為成本反轉(zhuǎn)點(diǎn)。隨著電力電子技術(shù)的發(fā)展和創(chuàng)新,使得開關(guān)電源技術(shù)也在不斷地創(chuàng)新,這一成本反轉(zhuǎn)點(diǎn)日益向低輸出電力端移動(dòng),這為開關(guān)電源提供了廣闊的發(fā)展空間。
電源有如人體的心臟,是所有電設(shè)備的動(dòng)力。但電源卻不像心臟那樣形式單一。因?yàn)椋瑯?biāo)志電源特性的參數(shù)有功率、電源、頻率、噪聲及帶載時(shí)參數(shù)的變化等等;在同一參數(shù)要求下,又有體積、重量、形態(tài)、效率、可靠性等指標(biāo),人可按此去"塑造"和完美電源,因此電源的形式是極多的。
隨著電力電子技術(shù)的高速發(fā)展,電力電子設(shè)備與人們的工作、生活的關(guān)系日益密切,而電子設(shè)備都離不開可靠的電源,進(jìn)入80年代計(jì)算機(jī)電源全面實(shí)現(xiàn)了開關(guān)電源化,率先完成計(jì)算機(jī)的電源換代,進(jìn)入90年開關(guān)電源相繼進(jìn)入各種電子、電器設(shè)備領(lǐng)域,程控交換機(jī)、通訊、電子檢測設(shè)備電源、控制設(shè)備電源等都已廣泛地使用了開關(guān)電源,更促進(jìn)了開關(guān)電源技術(shù)的迅速發(fā)展。開關(guān)電源是利用現(xiàn)代電力電子技術(shù),控制開關(guān)晶體管開通和關(guān)斷的時(shí)間比率,維持穩(wěn)定輸出電壓的一種電源,開關(guān)電源一般由脈沖寬度調(diào)制(PWM)控制IC和MOSFET構(gòu)成。開關(guān)電源和線性電源相比,二者的成本都隨著輸出功率的增加而增長,但二者增長速率各異。線性電源成本在某一輸出功率點(diǎn)上,反而高于開關(guān)電源,這一成本反轉(zhuǎn)點(diǎn)。隨著電力電子技術(shù)的發(fā)展和創(chuàng)新,使得開關(guān)電源技術(shù)在不斷地創(chuàng)新,這一成本反轉(zhuǎn)點(diǎn)日益向低輸出電力端移動(dòng),這為開關(guān)電源提供了廣泛的發(fā)展空間。
一般電力要經(jīng)過轉(zhuǎn)換才能符合使用的需要。轉(zhuǎn)換的例子有:交流轉(zhuǎn)換成直流,高電壓變成低電壓,大功率中取小功率等等。
開關(guān)電源的工作原理是:
1.交流電源輸入經(jīng)整流濾波成直流;
2.通過高頻PWM(脈沖寬度調(diào)制)信號控制開關(guān)管,將那個(gè)直流加到開關(guān)變壓器初級上;
3.開關(guān)變壓器次級感應(yīng)出高頻電壓,經(jīng)整流濾波供給負(fù)載;
4.輸出部分通過一定的電路反饋給控制電路,控制PWM占空比,以達(dá)到穩(wěn)定輸出的目的。
開關(guān)電源設(shè)計(jì)全過程
1 目的
希望以簡短的篇幅,將公司目前設(shè)計(jì)的流程做介紹,若有介紹不當(dāng)之處,請不吝指教。
2 設(shè)計(jì)步驟:
2.1 繪線路圖、PCB Layout.
2.2 變壓器計(jì)算。
2.3 零件選用。
2.4 設(shè)計(jì)驗(yàn)證。
3 設(shè)計(jì)流程介紹(以DA-14B33為例):
3.1 線路圖、PCB Layout請參考資識庫中說明。
3.2 變壓器計(jì)算:
變壓器是整個(gè)電源供應(yīng)器的重要核心,所以變壓器的計(jì)算及驗(yàn)證是很重要的,以下即就DA-14B33變壓器做介紹。
3.2.1 決定變壓器的材質(zhì)及尺寸:
依據(jù)變壓器計(jì)算公式
B(max) = 鐵心飽合的磁通密度(Gauss)
Lp = 一次側(cè)電感值(uH)
Ip = 一次側(cè)峰值電流(A)
Np = 一次側(cè)(主線圈)圈數(shù)
Ae = 鐵心截面積(cm2)
B(max)依鐵心的材質(zhì)及本身的溫度來決定,以TDK Ferrite Core PC40為例,100℃時(shí)的B(max)為3900 Gauss,設(shè)計(jì)時(shí)應(yīng)考慮零件誤差,所以一般取3000~3500 Gauss之間,若所設(shè)計(jì)的power為Adapter(有外殼)則應(yīng)取3000 Gauss左右,以避免鐵心因高溫而飽合,一般而言鐵心的尺寸越大,Ae越高,所以可以做較大瓦數(shù)的Power.
3.2.2 決定一次側(cè)濾波電容:
濾波電容的決定,可以決定電容器上的Vin(min),濾波電容越大,Vin(win)越高,可以做較大瓦數(shù)的Power,但相對價(jià)格亦較高。
3.2.3 決定變壓器線徑及線數(shù):
當(dāng)變壓器決定後,變壓器的Bobbin即可決定,依據(jù)Bobbin的槽寬,可決定變壓器的線徑及線數(shù),亦可計(jì)算出線徑的電流密度,電流密度一般以6A/mm2為參考,電流密度對變壓器的設(shè)計(jì)而言,只能當(dāng)做參考值,最終應(yīng)以溫昇記錄為準(zhǔn)。
3.2.4 決定Duty cycle (工作周期):
由以下公式可決定Duty cycle ,Duty cycle的設(shè)計(jì)一般以50%為基準(zhǔn),Duty cycle若超過50%易導(dǎo)致振蕩的發(fā)生。
NS = 二次側(cè)圈數(shù)
NP = 一次側(cè)圈數(shù)
Vo = 輸出電壓
VD= 二極體順向電壓
Vin(min) = 濾波電容上的谷點(diǎn)電壓
D =工作周期(Duty cycle)
3.2.5 決定Ip值:
Ip = 一次側(cè)峰值電流
Iav = 一次側(cè)平均電流
Pout = 輸出瓦數(shù)
效率
PWM震蕩頻率
3.2.6 決定輔助電源的圈數(shù):
依據(jù)變壓器的圈比關(guān)系,可決定輔助電源的圈數(shù)及電壓。
3.2.7 決定MOSFET及二次側(cè)二極體的Stress(應(yīng)力):
依據(jù)變壓器的圈比關(guān)系,可以初步計(jì)算出變壓器的應(yīng)力(Stress)是否符合選用零件的規(guī)格,計(jì)算時(shí)以輸入電壓264V(電容器上為380V)為基準(zhǔn)。
3.2.8 其它:
若輸出電壓為5V以下,且必須使用TL431而非TL432時(shí),須考慮多一組繞組提供Photo coupler及TL431使用。
3.2.9 將所得資料代入 公式中,如此可得出B(max),若B(max)值太高或太低則參數(shù)必須重新調(diào)整。
3.2.10 DA-14B33變壓器計(jì)算:
輸出瓦數(shù)13.2W(3.3V/4A),Core = EI-28,可繞面積(槽寬)=10mm,Margin Tape =? 2.8mm(每邊),剩余可繞面積=4.4mm.
假設(shè)fT = 45 KHz ,Vin(min)=90V,? =0.7,P.F.=0.5(cosθ),Lp=1600 Uh
計(jì)算式:
變壓器材質(zhì)及尺寸:l
由以上假設(shè)可知材質(zhì)為PC-40,尺寸=EI-28,Ae=0.86cm2,可繞面積(槽寬)=10mm,因Margin Tape使用2.8mm,所以剩余可繞面積為4.4mm.
假設(shè)濾波電容使用47uF/400V,Vin(min)暫定90V.
決定變壓器的線徑及線數(shù):
假設(shè)NP使用0.32ψ的線
電流密度=
可繞圈數(shù)=
假設(shè)Secondary使用0.35ψ的線
電流密度=
假設(shè)使用4P,則
電流密度=
可繞圈數(shù)=
決定Dutyl cycle:
假設(shè)Np=44T,Ns=2T,VD=0.5(使用schottky Diode)
決定Ip值:
決定輔助電源的圈數(shù):
假設(shè)輔助電源=12V
NA1=6.3圈
假設(shè)使用0.23ψ的線
可繞圈數(shù)=
若NA1=6Tx2P,則輔助電源=11.4V
決定MOSFET及二次側(cè)二極體的Stress(應(yīng)力):
MOSFET(Q1) =最高輸入電壓(380V)+ =
=463.6V
Diode(D5)=輸出電壓(Vo)+ x最高輸入電壓(380V)=
=20.57V
Diode(D4)=
= =41.4V
其它:
因?yàn)檩敵鰹?.3V,而TL431的Vref值為2.5V,若再加上photo coupler上的壓降約1.2V,將使得輸出電壓無法推動(dòng)Photo coupler及TL431,所以必須另外增加一組線圈提供回授路徑所需的電壓。
假設(shè)NA2 = 4T使用0.35ψ線,則
可繞圈數(shù)= ,所以可將NA2定為4Tx2P
變壓器的接線圖:
3.3 零件選用:
零件位置(標(biāo)注)請參考線路圖: (DA-14B33 Schematic)
3.3.1 FS1:
由變壓器計(jì)算得到Iin值,以此Iin值(0.42A)可知使用公司共用料2A/250V,設(shè)計(jì)時(shí)亦須考慮Pin(max)時(shí)的Iin是否會超過保險(xiǎn)絲的額定值。
3.3.2 TR1(熱敏電阻):
電源啟動(dòng)的瞬間,由於C1(一次側(cè)濾波電容)短路,導(dǎo)致Iin電流很大,雖然時(shí)間很短暫,但亦可能對Power產(chǎn)生傷害,所以必須在濾波電容之前加裝一個(gè)熱敏電阻,以限制開機(jī)瞬間Iin在Spec之內(nèi)(115V/30A,230V/60A),但因熱敏電阻亦會消耗功率,所以不可放太大的阻值(否則會影響效率),一般使用SCK053(3A/5Ω),若C1電容使用較大的值,則必須考慮將熱敏電阻的阻值變大(一般使用在大瓦數(shù)的Power上)。
3.3.3 VDR1(突波吸收器):
當(dāng)雷極發(fā)生時(shí),可能會損壞零件,進(jìn)而影響Power的正常動(dòng)作,所以必須在靠AC輸入端 (Fuse之後),加上突波吸收器來保護(hù)Power(一般常用07D471K),但若有價(jià)格上的考量,可先忽略不裝。
3.3.4 CY1,CY2(Y-Cap):
Y-Cap一般可分為Y1及Y2電容,若AC Input有FG(3 Pin)一般使用Y2- Cap , AC Input若為2Pin(只有L,N)一般使用Y1-Cap,Y1與Y2的差異,除了價(jià)格外(Y1較昂貴),絕緣等級及耐壓亦不同(Y1稱為雙重絕緣,絕緣耐壓約為Y2的兩倍,且在電容的本體上會有"回"符號或注明Y1),此電路因?yàn)橛蠪G所以使用Y2-Cap,Y-Cap會影響EMI特性,一般而言越大越好,但須考慮漏電及價(jià)格問題,漏電(Leakage Current )必須符合安規(guī)須求(3Pin公司標(biāo)準(zhǔn)為750uA max)。
3.3.5 CX1(X-Cap)、RX1:
X-Cap為防制EMI零件,EMI可分為Conduction及Radiation兩部分,Conduction規(guī)范一般可分為: FCC Part 15J Class B 、 CISPR 22(EN55022) Class B 兩種 , FCC測試頻率在450K~30MHz,CISPR 22測試頻率在150K~30MHz, Conduction可在廠內(nèi)以頻譜分析儀驗(yàn)證,Radiation 則必須到實(shí)驗(yàn)室驗(yàn)證,X-Cap 一般對低頻段(150K ~ 數(shù)M之間)的EMI防制有效,一般而言X-Cap愈大,EMI防制效果愈好(但價(jià)格愈高),若X-Cap在0.22uf以上(包含0.22uf),安規(guī)規(guī)定必須要有泄放電阻(RX1,一般為1.2MΩ 1/4W)。
3.3.6 LF1(Common Choke):
EMI防制零件,主要影響Conduction 的中、低頻段,設(shè)計(jì)時(shí)必須同時(shí)考慮EMI特性及溫昇,以同樣尺寸的Common Choke而言,線圈數(shù)愈多(相對的線徑愈細(xì)),EMI防制效果愈好,但溫昇可能較高。
3.3.7 BD1(整流二極體):
將AC電源以全波整流的方式轉(zhuǎn)換為DC,由變壓器所計(jì)算出的Iin值,可知只要使用1A/600V的整流二極體,因?yàn)槭侨ㄕ魉阅蛪褐灰?00V即可。
3.3.8 C1(濾波電容):
由C1的大小(電容值)可決定變壓器計(jì)算中的Vin(min)值,電容量愈大,Vin(min)愈高但價(jià)格亦愈高,此部分可在電路中實(shí)際驗(yàn)證Vin(min)是否正確,若AC Input 范圍在90V~132V (Vc1 電壓最高約190V),可使用耐壓200V的電容;若AC Input 范圍在90V~264V(或180V~264V),因Vc1電壓最高約380V,所以必須使用耐壓400V的電容。
Re:開關(guān)電方設(shè)計(jì)?過祘
3.3.9 D2(輔助電源二極體):
整流二極體,一般常用FR105(1A