當前位置:首頁 > 電源 > 電源
[導讀]本文以一款反激式開關電源為例,闡述了其傳導共模干擾的產(chǎn)生、傳播機理。根據(jù)噪聲活躍節(jié)點平衡的思想,提出了一種新的變壓器EMC設計方法。通過實 驗驗證,與傳統(tǒng)的設計方法

本文以一款反激式開關電源為例,闡述了其傳導共模干擾的產(chǎn)生、傳播機理。根據(jù)噪聲活躍節(jié)點平衡的思想,提出了一種新的變壓器EMC設計方法。通過實 驗驗證,與傳統(tǒng)的設計方法相比,該方法對傳導電磁干擾(EMI)的抑制能力更強,且能降低變壓器的制作成本和工藝復雜程度。本方法同樣適用于其他形式的帶變壓器拓撲結構的開關電源

  隨著功率半導體器件技術的發(fā)展,開關電源高功率體積比和高效率的特性使得其在現(xiàn)代軍事、工業(yè)和商業(yè)等各級別的儀器設備中得到廣泛應用,并且隨著時鐘頻率的不斷提高,設備的電磁兼容性(EMC)問題引起人們的廣泛關注。EMC設計已成為開關電源開發(fā)設計中必不可少的重要環(huán)節(jié)。

  傳導電磁干擾(EMI)噪聲的抑制必須在產(chǎn)品開發(fā)初期就加以考慮。通常情況下,加裝電源線濾波器是抑制傳導EMI的必要措施[1]。但是,僅僅依靠電源輸入 端的濾波器來抑制干擾往往會導致濾波器中元件的電感量增加和電容量增大。而電感量的增加使體積增加;電容量的增大受到漏電流安全標準的限制。電路中的其他 部分如果設計恰當也可以完成與濾波器相似的工作。本文提出了變壓器的噪聲活躍節(jié)點相位干燥繞法,這種設計方法不僅能減少電源線濾波器的體積,還能降低成本。

  1、反激式開關電源的共模傳導干擾

  電子設備的傳導噪聲干擾指的是:設備在與供電電網(wǎng)連接工作時以噪聲電流的形式通過電源線傳導到公共電網(wǎng)環(huán)境中去的電磁干擾。傳導干擾分為共模干擾與差模干擾兩種。共模 干擾電流在零線與相線上的相位相等;差模干擾電流在零線與相線上的相位相反。差模干擾對總體傳導干擾的貢獻較小,且主要集中在噪聲頻譜低頻端,較容易抑制;共模干擾對傳導干擾的貢獻較大,且主要處在噪聲頻譜的中頻和高頻頻段。對共模傳導干擾的抑制是電子設備傳導EMC設計中的難點,也是最主要的任務。

  反激式開關電源的電路中存在一些電壓劇變的節(jié)點。和電路中其他電勢相對穩(wěn)定的節(jié)點不同,這些節(jié)點的電壓包含高強度的高頻成分[2]。這些電壓變化十分活躍的 節(jié)點稱為噪聲活躍節(jié)點。噪聲活躍節(jié)點是開關電源電路中的共模傳導干擾源,它作用于電路中的對地雜散電容就產(chǎn)生共模噪聲電流ICM 。而電路中對EMI影響較大的對地雜散電容有:功率開關管的漏極對地的寄生電容Cde,變壓器的主邊繞組對副邊繞組的寄生電容Cpa;變壓器的副邊回路對地的寄生電容Cae, 變壓器主、副邊繞組對磁芯的寄生電容Cpc、Cac 以及變壓器磁芯對地的寄生電容Cce這些寄生電容在電路中的分布如圖1所示。

  

  圖1、共模噪聲電流在電路中的耦合途徑

  圖1中的共模電流ICM在電路中的耦合途徑主要有3條:從噪聲源—— 功率開關管的d極通過Cde耦合到地;從噪聲源通過Cpa耦合到變壓器次級電路,再通過Cae 耦合到地;從變壓器的前、次級線圈通過Cpc、Cac 耦合到變壓器磁芯,再通過Cce 耦合到地。這3種電流是構成共模噪聲電流(圖1中的黑色箭頭所示)的主要因素。共模電流通過電源線輸入端的地線回流,從而被LISN取樣測量得到。

  2、隔離變壓器的EMC設計

  2.1、傳統(tǒng)變壓器EMC設計

  共模噪聲的耦合除了通過場效應管d極對地這條途徑外,開關管d極的噪聲電壓通過變壓器的寄生電容將噪聲電流耦合到變壓器副邊繞組所在的回路,再通過次級回路 對地的寄生電容耦合到地也是共模電流產(chǎn)生的途徑。因此設法減小從變壓器主邊繞組傳遞到副邊繞組間的共模電流是一種有效的EMC設計方法。傳統(tǒng)的變壓器 EMC設計方法是在兩繞組間添加隔離層[3],如圖2所示。

  

  圖2、變壓器隔離層對噪聲電流的影響

  金屬隔離層直接連接地線的設計會增大共模噪聲電流,使EMC性能變差。隔離層應該是電路中電位穩(wěn)定的節(jié)點,比如將圖2中的隔離層連接到電路前級的負極就是一個很好的接法。這樣的連接能把原本流向大地的共模電流有效分流,從而大大降低電源線的傳導噪聲發(fā)射水平。

  2.2、節(jié)點相位平衡法

  在電路中,噪聲電壓活躍節(jié)點并不是單一的。以本文分析的電路為例:除功率開關管的d極外,變壓器前級繞組的另一端Uin 也是一個噪聲電壓活躍節(jié)點,而且節(jié)點電壓的變化方向與場管的d極電壓情況相反。所以變壓器次級繞組的兩端是相位相反的噪聲電壓活躍節(jié)點。圖3所示的是采用節(jié)點相位平衡法后,變壓器骨架上的線圈分布情況。

  

  圖3、噪聲電流在變壓器內(nèi)部的耦合情況

  LED路燈是低電壓、大電流的驅(qū)動器件,其發(fā)光的強度由流過LED的電流決定,電流過強會引起LED的衰減,電流過弱會影響LED的發(fā)光強度,因此LED的驅(qū)動需要提供恒流電源,以保證大功率LED使用的安全性,同時達到理想的發(fā)光強度。用市電驅(qū)動大功率LED需要解決降壓、隔離、PFC(功率因素校正)和恒流問題,還需有比較高的轉(zhuǎn)換效率,有較小的體積,能長時間工作,易散熱,低成本,抗電磁干擾,和過溫、過流、短路、開路保護等。本方案設計的PFC開關電源性能良好、可靠、經(jīng)濟實惠且效率高,在LED路燈使用過程中取得滿意的效果。

  1 系統(tǒng)結構框圖

  采用隔離變壓器、PFC控制實現(xiàn)的開關電源,輸出恒壓恒流的電壓,驅(qū)動LED路燈。電路的總體框圖如圖1所示。

  

  LED抗浪涌的能力是比較差的,特別是抗反向電壓能力。加強這方面的保護也很重要。LED路燈裝在戶外更要加強浪涌防護。由于電網(wǎng)負載的啟甩和雷擊的感應,從電網(wǎng)系統(tǒng)會侵入各種浪涌,有些浪涌會導致LED的損壞。因此LED驅(qū)動電源應具有抑制浪涌侵入,保護LED不被損壞的能力。EMI濾波電路主要防止電網(wǎng)上的諧波干擾串入模塊,影響控制電路的正常工作。

  三相交流電經(jīng)過全橋整流后變成脈動的直流在濾波電容和電感的作用下,輸出直流電壓。主開關DC/AC電路將直流電轉(zhuǎn)換為高頻脈沖電壓在變壓器的次級輸出。變壓器輸出的高頻脈沖經(jīng)過高頻整流、LC濾波和EMI濾波,輸出LED路燈需要的直流電源.

  PWM控制電路采用電壓電流雙環(huán)控制,以實現(xiàn)對輸出電壓的調(diào)整和輸出電流的限制。反饋網(wǎng)絡采用恒流恒壓器件TSM101和比較器,反饋信號通過光耦送給PFC器L6561.由于使用了PFC器件使模塊的功率因數(shù)達到0.95.

  2 DC/DC變換器

  DC/DC變換器的類型有多種,為了保證用電安全,本設計方案選為隔離式。隔離式DC/DC變換形式又可進一步細分為正激式、反激式、半橋式、全橋式和推挽式等。其中,半橋式、全橋式和推挽式通常用于大功率輸出場合,其激勵電路復雜,實現(xiàn)起來較困難;而正激式和反激式電路則簡單易行,但由于反激式比正激式更適應輸入電壓有變化的情況,且本電源系統(tǒng)中PFC輸出電壓會發(fā)生較大的變化,故DC/DC變換采用反激方式,有利于確保輸出電壓穩(wěn)定不變。

  反激式開關電源主要應用于輸出功率為5~150W的情況。這種電源結構是由Buck-Boost結構推演并加上隔離變壓器而得到,如圖2所示。在反激式拓撲中,由變壓器作為儲能元件。開關管導通時,變壓器儲存能量,負載電流由輸出濾波電容提供;開關管關斷時,變壓器將儲存的能量傳送到負載和輸出濾波電容,以補償電容單獨提供負載電流時消耗的能量。

  

  圖中T1為高頻隔離變壓器,VQ1為CMOS功率三極管17N80C3,VD7和VD8是瞬變抑制二極管,VD6為快恢復二極管,VD5為雙二極管,C3、C4、C5和C6為電解電容器。Ubout是來自整流橋的脈動直流信號,GD是來自功率因數(shù)校正電路的控制信號。變壓器的引線l和2組成一個繞組,給PFC器件提供工作電源,引線11和12組成一個繞組,為恒流恒壓器件和比較器提供工作電源。

  3 反饋網(wǎng)絡電路

  3.1恒流恒壓電路

  本設計使用恒流恒壓控制器件TSM101調(diào)節(jié)輸出電壓和電流,使之穩(wěn)定。電路如圖3所示。通過TSM101的控制作用,保證了電源恒流(CC)和恒壓(CV)工作。圖3中,Uout+和Uout-是隔離變壓器經(jīng)過雙二極管和電解電容器濾波的電壓,再經(jīng)電感L4和電容濾波后的輸出為Uout+和Uout-,為本電源模塊的輸出電壓,直接加在LED路燈上??烧{(diào)電阻器RV1和RV2分別調(diào)節(jié)輸出電壓和電流的大小。R10和R11為22mΩ的電阻,分別對電源輸出的電壓和電流采樣。TMS101的輸出TOUT通過光電耦合器、可控硅和三極管等電路送到L6561的引腳5,通過反饋電路實現(xiàn)恒流控制。器件引腳8接輔助電源,引腳4接變壓器T1副邊地。

  

本站聲明: 本文章由作者或相關機構授權發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點,本站亦不保證或承諾內(nèi)容真實性等。需要轉(zhuǎn)載請聯(lián)系該專欄作者,如若文章內(nèi)容侵犯您的權益,請及時聯(lián)系本站刪除。
換一批
延伸閱讀

9月2日消息,不造車的華為或?qū)⒋呱龈蟮莫毥谦F公司,隨著阿維塔和賽力斯的入局,華為引望愈發(fā)顯得引人矚目。

關鍵字: 阿維塔 塞力斯 華為

加利福尼亞州圣克拉拉縣2024年8月30日 /美通社/ -- 數(shù)字化轉(zhuǎn)型技術解決方案公司Trianz今天宣布,該公司與Amazon Web Services (AWS)簽訂了...

關鍵字: AWS AN BSP 數(shù)字化

倫敦2024年8月29日 /美通社/ -- 英國汽車技術公司SODA.Auto推出其旗艦產(chǎn)品SODA V,這是全球首款涵蓋汽車工程師從創(chuàng)意到認證的所有需求的工具,可用于創(chuàng)建軟件定義汽車。 SODA V工具的開發(fā)耗時1.5...

關鍵字: 汽車 人工智能 智能驅(qū)動 BSP

北京2024年8月28日 /美通社/ -- 越來越多用戶希望企業(yè)業(yè)務能7×24不間斷運行,同時企業(yè)卻面臨越來越多業(yè)務中斷的風險,如企業(yè)系統(tǒng)復雜性的增加,頻繁的功能更新和發(fā)布等。如何確保業(yè)務連續(xù)性,提升韌性,成...

關鍵字: 亞馬遜 解密 控制平面 BSP

8月30日消息,據(jù)媒體報道,騰訊和網(wǎng)易近期正在縮減他們對日本游戲市場的投資。

關鍵字: 騰訊 編碼器 CPU

8月28日消息,今天上午,2024中國國際大數(shù)據(jù)產(chǎn)業(yè)博覽會開幕式在貴陽舉行,華為董事、質(zhì)量流程IT總裁陶景文發(fā)表了演講。

關鍵字: 華為 12nm EDA 半導體

8月28日消息,在2024中國國際大數(shù)據(jù)產(chǎn)業(yè)博覽會上,華為常務董事、華為云CEO張平安發(fā)表演講稱,數(shù)字世界的話語權最終是由生態(tài)的繁榮決定的。

關鍵字: 華為 12nm 手機 衛(wèi)星通信

要點: 有效應對環(huán)境變化,經(jīng)營業(yè)績穩(wěn)中有升 落實提質(zhì)增效舉措,毛利潤率延續(xù)升勢 戰(zhàn)略布局成效顯著,戰(zhàn)新業(yè)務引領增長 以科技創(chuàng)新為引領,提升企業(yè)核心競爭力 堅持高質(zhì)量發(fā)展策略,塑強核心競爭優(yōu)勢...

關鍵字: 通信 BSP 電信運營商 數(shù)字經(jīng)濟

北京2024年8月27日 /美通社/ -- 8月21日,由中央廣播電視總臺與中國電影電視技術學會聯(lián)合牽頭組建的NVI技術創(chuàng)新聯(lián)盟在BIRTV2024超高清全產(chǎn)業(yè)鏈發(fā)展研討會上宣布正式成立。 活動現(xiàn)場 NVI技術創(chuàng)新聯(lián)...

關鍵字: VI 傳輸協(xié)議 音頻 BSP

北京2024年8月27日 /美通社/ -- 在8月23日舉辦的2024年長三角生態(tài)綠色一體化發(fā)展示范區(qū)聯(lián)合招商會上,軟通動力信息技術(集團)股份有限公司(以下簡稱"軟通動力")與長三角投資(上海)有限...

關鍵字: BSP 信息技術
關閉
關閉