放大器建模為模擬濾波器可提高SPICE仿真速度(二)
設(shè)計示例:10倍增益放大器
在第二個示例中,考慮一個無過沖10倍增益放大器的脈沖響應(yīng),如圖9所示。建立時間約為7 μs。由于無過沖,脈沖響應(yīng)可以近似為具有臨界阻尼, ζ ≈ 0.935 (Mp = 0.025%)。
圖9. 無過沖10倍增益放大器
在無過沖的情況下,很容易保持恒定的建立時間,并調(diào)整阻尼比以模擬正確的帶寬和峰化。圖10顯示了極點如何隨阻尼比而變化,與此同時建立時間保持不變。圖11顯示了頻率響應(yīng)的變化情況。
圖10. 不同阻尼比對應(yīng)的極點位置,建立時間保持不變
圖11. 不同阻尼比對應(yīng)的頻率響應(yīng),建立時間保持不變
***AD8208 PREAMPLIFIER_TRANSFER_FUNCTION (GAIN = 20 dB)***
.SUBCKT PREAMPLIFIER_GAIN_10 +IN –IN OUT
E1 OUT 0 LAPLACE {V(+IN)–V(–IN)} = {3.734E12 / (S^2 + 1.143E6*S + 373.379E9)}
.END
為求得單位增益拓撲的電阻和電容值,請像前面一樣選擇R1 = R2 = 10 kΩ 。利用與5倍增益放大器示例相同的方法計算電容值:
網(wǎng)絡(luò)列表如下文所示,Sallen-Key仿真電路模型則如圖12所示。E2是一個10倍增益模塊,與一個2 Ω輸出阻抗一起置于輸出級。E2將單位增益?zhèn)鬟f函數(shù)放大10倍。拉普拉斯變換和Sallen-Key網(wǎng)絡(luò)列表產(chǎn)生的仿真相同,如圖13所示。
***AD8208 PREAMPLIFIER_TRANSFER_FUNCTION (GAIN = 20 dB)***
.SUBCKT AMPLIFIER_GAIN_10_SALLEN_KEY +IN –IN OUT
R1 1 4 10E3
R2 5 1 10E3
C2 5 0 153E–12
C1 2 1 175E–12
G1 0 2 5 2 1E6
E2 4 0 +IN –IN 10
E1 3 0 2 0 1
RO OUT 3 2
.END
圖12. 采用Sallen-Key濾波器的10倍增益放大器仿真電路
圖13. 采用Sallen-Key濾波器的10倍增益放大器的頻域仿真
利用MFB拓撲可以進行相似的推導。網(wǎng)絡(luò)列表如下文所示,仿真模型則如圖14所示。
***AD8208 PREAMPLIFIER_TRANSFER_FUNCTION (GAIN = 20 dB)***
.SUBCKT 8208_MFB +IN –IN OUT
***G1 = VCCS WITH 120 dB OPEN_LOOP_GAIN***
G1 0 7 0 6 1E6
R1 4 3 994.7
R2 7 4 9.95K
R3 6 4 26.93K
C1 0 4 1N
C2 7 6 10P
EIN_STAGE 3 0 +IN –IN 1
***E2 = OUTPUT BUFFER***
E2 9 0 7 0 1
***OUTPUT RESISTANCE = 2 Ω***
RO OUT 9 2
.END
圖14. 采用MFB濾波器的10倍增益放大器仿真電路
結(jié)束語
對于高帶寬放大器,與利用s域(拉普拉斯變換)傳遞函數(shù)相比,利用模擬元件構(gòu)建SPICE模型能夠提供快得多的時域仿真。Sallen-Key和MFB低通濾波器拓撲提供了一種將s域傳遞函數(shù)轉(zhuǎn)換為電阻、電容和壓控電流源的方法。
MFB拓撲的非理想操作來源于 C1 和 C2 在高頻時表現(xiàn)為相對于電阻R1、 R2和R3的阻抗短路。同樣,Sallen-Key拓撲的非理想操作來源于C1 和 C2 在高頻時表現(xiàn)為相對于電阻 R1 和 R2的阻抗短路。這兩種拓撲的對比如圖15所示。
現(xiàn)有常用于CMRR、PSRR、失調(diào)電壓、電源電流、頻譜噪聲、輸入/輸出限幅及其它參數(shù)的電路可以與該模型合并,如圖16所示。
圖15. Sallen-Key和MFB拓撲的波特圖
圖16. 包括誤差項的完整SPICE放大器模型