當(dāng)前位置:首頁 > 電源 > 數(shù)字電源
[導(dǎo)讀]設(shè)計人員有各種模數(shù)轉(zhuǎn)換器(ADC)可以選擇,數(shù)字?jǐn)?shù)據(jù)輸出類型是選擇過程中需要考慮的一項重要參數(shù)。目前,高速轉(zhuǎn)換器三種最常用的數(shù)字輸出是互補(bǔ)金屬氧化物半導(dǎo)體(CMOS)、低壓

設(shè)計人員有各種模數(shù)轉(zhuǎn)換器(ADC)可以選擇,數(shù)字?jǐn)?shù)據(jù)輸出類型是選擇過程中需要考慮的一項重要參數(shù)。目前,高速轉(zhuǎn)換器三種最常用的數(shù)字輸出是互補(bǔ)金屬氧化物半導(dǎo)體(CMOS)、低壓差分信號(LVDS)和電流模式邏輯(CML)。

ADC中每種數(shù)字輸出類型都各有優(yōu)劣,設(shè)計人員應(yīng)根據(jù)特定應(yīng)用仔細(xì)考慮。這些因素取決于ADC的采樣速率和分辨率、輸出數(shù)據(jù)速率、系統(tǒng)設(shè)計的電源要求,以及其他因素。

本文將討論每種輸出類型的電氣規(guī)格,及其適合特定應(yīng)用的具體特點(diǎn)。我們將從物理實現(xiàn)、效率以及最適合每種類型的應(yīng)用這些方面來對比這些不同類型的輸出。

CMOS數(shù)字輸出驅(qū)動器

在采樣速率小于200 Msps (ms/sec)的ADC中,CMOS是很常見的數(shù)字輸出。典型的CMOS驅(qū)動器由兩個晶體管(一個NMOS和一個PMOS)組成,連接在電源(VDD)和地之間,如圖1a所示。這種結(jié)構(gòu)會導(dǎo)致輸出反轉(zhuǎn),因此,可以采用圖1b所示的背對背結(jié)構(gòu)作為替代方法,避免輸出反轉(zhuǎn)。

輸出為低阻抗時,CMOS輸出驅(qū)動器的輸入為高阻抗。在驅(qū)動器的輸入端,由于柵極與導(dǎo)電材料之間經(jīng)柵極氧化層隔離,兩個CMOS晶體管的柵極阻抗極高。輸入端阻抗范圍可達(dá)k?至M?級。

在驅(qū)動器輸出端,阻抗由漏電流ID控制,該電流通常較小。此時,阻抗通常小于幾百?。CMOS的電平擺幅大約在VDD和地之間,因此可能會很大,具體取決于VDD幅度。

圖1:典型CMOS數(shù)字輸出驅(qū)動器


由于輸入阻抗較高,輸出阻抗較低,CMOS的優(yōu)勢之一在于通??梢杂靡粋€輸出驅(qū)動多個CMOS輸入。

CMOS的另一個優(yōu)勢是低靜態(tài)電流。唯一出現(xiàn)較大電流的情況是CMOS驅(qū)動器上發(fā)生切換時。無論驅(qū)動器處于低電平(拉至地)還是高電平(拉至VDD),驅(qū)動器中的電流都極小。但是,當(dāng)驅(qū)動器從低電平切換到高電平或從高電平切換到低電平時,VDD與地之間會暫時出現(xiàn)低阻抗路徑。該瞬態(tài)電流是轉(zhuǎn)換器速度超過200MSPS時,輸出驅(qū)動器中采用其他技術(shù)的主要原因。

另一個原因是轉(zhuǎn)換器的每一位都需要CMOS驅(qū)動器。如果轉(zhuǎn)換器有14位,就需要14個CMOS輸出驅(qū)動器來傳輸每一位。一般會有一個以上的轉(zhuǎn)換器置于單個指定封裝,常見為八個。

采用CMOS技術(shù)時,意味著數(shù)據(jù)輸出需要高達(dá)112個輸出引腳。從封裝角度來看,這不太可能實現(xiàn),而且還會產(chǎn)生高功耗,并使電路板布局變得更加復(fù)雜。為了解決這些問題,我們引入了使用LVDS的接口。

LVDS數(shù)字輸出驅(qū)動器

與CMOS技術(shù)相比,LVDS具備一些明顯優(yōu)勢。它可以在低電壓信號(約350mV)下工作,并且為差分而非單端。低壓擺幅具有較快的切換時間,可以減少EMI問題。

差分這一特性可以帶來共模抑制的好處。這意味著耦合到信號的噪聲對兩個信號路徑均為共模,大部分都可被差分接收器消除。

LVDS中的阻抗必須更加嚴(yán)格控制。在LVDS中,負(fù)載阻抗應(yīng)約為100?,通常通過LVDS接收器上的并聯(lián)端接電阻實現(xiàn)。此外,LVDS信號還應(yīng)采用受控阻抗傳輸線進(jìn)行傳輸。差分阻抗保持在100?時,所需的單端阻抗為50?。圖2所示為典型LVDS輸出驅(qū)動器。


圖2:典型LVDS輸出驅(qū)動器

如圖2中LVDS輸出驅(qū)動器拓?fù)浣Y(jié)構(gòu)所示,電路工作會在輸出電源產(chǎn)生固定直流負(fù)載電流。這可以避免輸出邏輯狀態(tài)躍遷時典型CMOS輸出驅(qū)動器中出現(xiàn)的電流尖峰。電路中的標(biāo)稱拉電流/灌電流設(shè)為3.5mA,使得端接電阻100?時典型輸出電壓擺幅為350mV。電路的共模電平通常設(shè)為1.2V,兼容3.3V、2.5V和1.8V電源電壓。

有兩種書面標(biāo)準(zhǔn)可用來定義LVDS接口。最常用的標(biāo)準(zhǔn)之一是ANSI/TIA/EIA-644規(guī)格,標(biāo)題為《低壓差分信號(LVDS)接口電路的電氣特性》。另一種是IEEE標(biāo)準(zhǔn)1596.3,標(biāo)題為《可擴(kuò)展一致性接口(SCI)的低壓差分信號IEEE標(biāo)準(zhǔn)》。

LVDS需要多加注意信號路由的物理布局,但在采樣速率達(dá)到200MSPS或更高時可以為轉(zhuǎn)換器提供許多優(yōu)勢。LVDS的恒定電流使得許多輸出都能受到驅(qū)動,無需CMOS要求的大量電流吸取。

此外,LVDS還能以雙倍數(shù)據(jù)速率(DDR)模式工作,其中兩個數(shù)據(jù)位可以通過同一個LVDS輸出驅(qū)動器。與CMOS相比,可以減少一半的引腳數(shù)。

同時,還降低了等量數(shù)據(jù)輸出的功耗。對轉(zhuǎn)換器數(shù)據(jù)輸出而言,LVDS確實相比CMOS具有諸多優(yōu)勢,但也和CMOS一樣存在一些限制。隨著轉(zhuǎn)換器分辨率的增加,LVDS接口所需的數(shù)據(jù)輸出量會變得更難針對PCB布局進(jìn)行管理。而且,轉(zhuǎn)換器的采樣率最終會使接口所需的數(shù)據(jù)速率超出LVDS的能力。

CML輸出驅(qū)動器

轉(zhuǎn)換器數(shù)字輸出接口的最新趨勢是使用具有電流模式邏輯(CML)輸出驅(qū)動器的串行接口。通常,高分辨率(≥14位)、高速(≥200 Msps)和需要小型封裝與低功耗的轉(zhuǎn)換器會使用這些類型的驅(qū)動器。CML輸出驅(qū)動器用在JESD204接口,這種接口目前用于最新轉(zhuǎn)換器。

采用具有JESD204接口的CML驅(qū)動器后,轉(zhuǎn)換器輸出端的數(shù)據(jù)速率可達(dá)12Gbps(當(dāng)前版本JESD204B規(guī)格)。此外,需要的輸出引腳數(shù)也會大幅減少。時鐘內(nèi)置于8b/10b編碼數(shù)據(jù)流,因此無需傳輸獨(dú)立時鐘信號。

數(shù)據(jù)輸出引腳數(shù)量也得以減少,最少只需兩個。由于轉(zhuǎn)換器的分辨率、速度和通道數(shù)增加,數(shù)據(jù)輸出引腳的數(shù)量可調(diào)整到適應(yīng)所需的更高吞吐量。但是,由于CML驅(qū)動器采用的接口通常為串行接口,引腳數(shù)的增加與CMOS或LVDS相比要小得多。(CMOS或LVDS中傳輸?shù)臄?shù)據(jù)為并行數(shù)據(jù),需要的引腳數(shù)多得多。)

表1所示為采用80Msps轉(zhuǎn)換器的三種不同接口,轉(zhuǎn)換器具有各種通道數(shù)和位分辨率。在CMOS和LVDS輸出中,數(shù)據(jù)用作每個通道數(shù)據(jù)的同步時鐘,使用CML輸出時,JESD204數(shù)據(jù)傳輸?shù)淖畲髷?shù)據(jù)速率為3.2Gbps。察看該表可以發(fā)現(xiàn),CML的優(yōu)勢十分明顯,引腳數(shù)大大較少。

表1:引腳數(shù)比較 - 80Msps ADC

CML驅(qū)動器用于串行數(shù)據(jù)接口,因此,所需引腳數(shù)要少得多。圖3所示為用于具有JESD204接口或類似數(shù)據(jù)輸出的轉(zhuǎn)換器的典型CML驅(qū)動器。該圖顯示了CML驅(qū)動器典型架構(gòu)的一般情況。圖中顯示了可選源端接電阻和共模電壓。電路的輸入可將開關(guān)驅(qū)動至電流源,電流源則將適當(dāng)?shù)倪壿嬛凋?qū)動至兩個輸出端。

圖3:典型CML輸出驅(qū)動器

CML驅(qū)動器類似于LVDS驅(qū)動器,以恒定電流模式工作。這也使得CML驅(qū)動器在功耗方面具備一定優(yōu)勢。在恒定電流模式下工作需要較少的輸出引腳,總功耗會降低。

和LVDS一樣,CML也需要負(fù)載端接、單端阻抗為50?的受控阻抗傳輸線路,以及100?的差分阻抗。驅(qū)動器本身也可能具有如圖3所示的端接,對因高帶寬信號靈敏度引起的信號反射有所幫助。

對符合JESD204標(biāo)準(zhǔn)的轉(zhuǎn)換器而言,差分和共模電平均存在不同規(guī)格,具體取決于工作速度。工作速度高達(dá)6.375Gbps,差分電平標(biāo)稱值為800mV,共模電平約為1.0V。

在高于6.375Gbps且低于12.5Gbps的速度下工作時,差分電平額定值為400mV,共模電平仍約為1.0V。隨著轉(zhuǎn)換器速度和分辨率增加,CML輸出需要合適類型的驅(qū)動器提供必要速度,以滿足各種應(yīng)用中轉(zhuǎn)換器的技術(shù)需求。

數(shù)字時序:注意事項

每種數(shù)字輸出驅(qū)動器都有時序關(guān)系,需要密切關(guān)注。由于CMOS和LVDS有多種數(shù)據(jù)輸出,需要有路由路徑來盡量減小偏斜。如果差別過大,可能就無法在接收器上實現(xiàn)合適的時序。

此外,時鐘信號也需要通過路由傳輸,并與數(shù)據(jù)輸出保持一致。時鐘輸出和數(shù)據(jù)輸出之間的路由路徑也必須格外注意,這也是為了確保偏斜不會太大。

在采用JESD204接口的CML中,數(shù)字輸出之間的路由路徑也必須加以注意。需要管理的數(shù)據(jù)輸出大大減少,因此,這一任務(wù)比較容易完成,但也不能完全忽略。這種情況下,時鐘內(nèi)置于數(shù)據(jù)中,因此無需擔(dān)心數(shù)據(jù)輸出和時鐘輸出之間的時序偏斜。但是,必須注意,接收器中要有足夠的時鐘和數(shù)據(jù)恢復(fù)(CDR)電路。

除了偏斜之外,還必須關(guān)注CMOS和LVDS的建立和保持時間。數(shù)據(jù)輸出必須于時鐘發(fā)生邊沿躍遷之前在充足時間內(nèi)驅(qū)動至恰當(dāng)?shù)倪壿嫚顟B(tài),還必須在時鐘發(fā)生邊沿躍遷之后以該邏輯狀態(tài)維持充足時間。這可能會受到數(shù)據(jù)輸出和時鐘輸出之間偏斜的影響,因此,保持良好的時序關(guān)系非常重要。

由于具有較低信號擺幅和差分信號,LVDS相比CMOS具有一定優(yōu)勢。和CMOS驅(qū)動器一樣切換邏輯狀態(tài)時,LVDS輸出驅(qū)動器無需將這樣的大信號驅(qū)動至各種不同輸出,也不會從電源吸取大量電流。因此,它在切換邏輯狀態(tài)時不太可能會出現(xiàn)問題。

如果有許多CMOS驅(qū)動器同時切換,電源電壓會下拉并引起問題,將正確的邏輯值驅(qū)動至接收器。LVDS驅(qū)動器會保持在恒定電流水平,這一特別問題就不會發(fā)生。此外,由于采用了差分信號,LVDS驅(qū)動器本身對共模噪聲的耐受能力也較強(qiáng)。

CML驅(qū)動器具有和LVDS同樣的優(yōu)勢。這些驅(qū)動器也有恒定水平的電流,但和LVDS不同的是,由于數(shù)據(jù)為串行,所需電流值小得多。此外,由于也采用了差分信號,CML驅(qū)動器同樣對共模噪聲具有良好的耐受能力。

但是,LVDS和CML的缺點(diǎn)在于,由于電流為恒定值,因此,即使在采樣速率較低時,功耗仍然會很大。對于高速與高分辨率轉(zhuǎn)換器而言,LVDS或CML相比CMOS的優(yōu)勢在于,功耗和引腳數(shù)明顯減少。

隨著轉(zhuǎn)換器技術(shù)的發(fā)展,速度和分辨率不斷增加,數(shù)字輸出驅(qū)動器也不斷演變發(fā)展,以滿足數(shù)據(jù)傳輸需求。隨著轉(zhuǎn)換器中的數(shù)字輸出接口轉(zhuǎn)換為串行數(shù)據(jù)傳輸,CML輸出越來越普及。

但是,目前的設(shè)計中仍然會用到CMOS和LVDS數(shù)字輸出。每種數(shù)字輸出都有最適合的應(yīng)用。每種輸出都面臨著挑戰(zhàn),必須考慮到一些設(shè)計問題,且各有所長。

在采樣速度小于200Msps的轉(zhuǎn)換器中,CMOS仍然是一種合適的技術(shù)。采樣速度增至200Msps以上時,和CMOS相比,LVDS在許多應(yīng)用中更加可行。為了進(jìn)一步增加效率、降低功耗、減小封裝尺寸,CML驅(qū)動器可與JESD204之類的串行數(shù)據(jù)接口配合使用。

本站聲明: 本文章由作者或相關(guān)機(jī)構(gòu)授權(quán)發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點(diǎn),本站亦不保證或承諾內(nèi)容真實性等。需要轉(zhuǎn)載請聯(lián)系該專欄作者,如若文章內(nèi)容侵犯您的權(quán)益,請及時聯(lián)系本站刪除。
換一批
延伸閱讀

9月2日消息,不造車的華為或?qū)⒋呱龈蟮莫?dú)角獸公司,隨著阿維塔和賽力斯的入局,華為引望愈發(fā)顯得引人矚目。

關(guān)鍵字: 阿維塔 塞力斯 華為

加利福尼亞州圣克拉拉縣2024年8月30日 /美通社/ -- 數(shù)字化轉(zhuǎn)型技術(shù)解決方案公司Trianz今天宣布,該公司與Amazon Web Services (AWS)簽訂了...

關(guān)鍵字: AWS AN BSP 數(shù)字化

倫敦2024年8月29日 /美通社/ -- 英國汽車技術(shù)公司SODA.Auto推出其旗艦產(chǎn)品SODA V,這是全球首款涵蓋汽車工程師從創(chuàng)意到認(rèn)證的所有需求的工具,可用于創(chuàng)建軟件定義汽車。 SODA V工具的開發(fā)耗時1.5...

關(guān)鍵字: 汽車 人工智能 智能驅(qū)動 BSP

北京2024年8月28日 /美通社/ -- 越來越多用戶希望企業(yè)業(yè)務(wù)能7×24不間斷運(yùn)行,同時企業(yè)卻面臨越來越多業(yè)務(wù)中斷的風(fēng)險,如企業(yè)系統(tǒng)復(fù)雜性的增加,頻繁的功能更新和發(fā)布等。如何確保業(yè)務(wù)連續(xù)性,提升韌性,成...

關(guān)鍵字: 亞馬遜 解密 控制平面 BSP

8月30日消息,據(jù)媒體報道,騰訊和網(wǎng)易近期正在縮減他們對日本游戲市場的投資。

關(guān)鍵字: 騰訊 編碼器 CPU

8月28日消息,今天上午,2024中國國際大數(shù)據(jù)產(chǎn)業(yè)博覽會開幕式在貴陽舉行,華為董事、質(zhì)量流程IT總裁陶景文發(fā)表了演講。

關(guān)鍵字: 華為 12nm EDA 半導(dǎo)體

8月28日消息,在2024中國國際大數(shù)據(jù)產(chǎn)業(yè)博覽會上,華為常務(wù)董事、華為云CEO張平安發(fā)表演講稱,數(shù)字世界的話語權(quán)最終是由生態(tài)的繁榮決定的。

關(guān)鍵字: 華為 12nm 手機(jī) 衛(wèi)星通信

要點(diǎn): 有效應(yīng)對環(huán)境變化,經(jīng)營業(yè)績穩(wěn)中有升 落實提質(zhì)增效舉措,毛利潤率延續(xù)升勢 戰(zhàn)略布局成效顯著,戰(zhàn)新業(yè)務(wù)引領(lǐng)增長 以科技創(chuàng)新為引領(lǐng),提升企業(yè)核心競爭力 堅持高質(zhì)量發(fā)展策略,塑強(qiáng)核心競爭優(yōu)勢...

關(guān)鍵字: 通信 BSP 電信運(yùn)營商 數(shù)字經(jīng)濟(jì)

北京2024年8月27日 /美通社/ -- 8月21日,由中央廣播電視總臺與中國電影電視技術(shù)學(xué)會聯(lián)合牽頭組建的NVI技術(shù)創(chuàng)新聯(lián)盟在BIRTV2024超高清全產(chǎn)業(yè)鏈發(fā)展研討會上宣布正式成立。 活動現(xiàn)場 NVI技術(shù)創(chuàng)新聯(lián)...

關(guān)鍵字: VI 傳輸協(xié)議 音頻 BSP

北京2024年8月27日 /美通社/ -- 在8月23日舉辦的2024年長三角生態(tài)綠色一體化發(fā)展示范區(qū)聯(lián)合招商會上,軟通動力信息技術(shù)(集團(tuán))股份有限公司(以下簡稱"軟通動力")與長三角投資(上海)有限...

關(guān)鍵字: BSP 信息技術(shù)
關(guān)閉
關(guān)閉