基于ARM Cortex-M3的小型化遠程監(jiān)控智能電源系統(tǒng)
傳統(tǒng)的電源維護采用的是人工手動式維護管理模式,而智能電源監(jiān)控系統(tǒng)以嵌入式技術(shù)、計算機技術(shù)、通信技術(shù)等為基礎(chǔ),實現(xiàn)了電源系統(tǒng)向智能化、自動化管理模式的轉(zhuǎn)變。
隨著當代科技的日益發(fā)展,數(shù)量巨大的各類設(shè)備的電源維護管理需要投入大量的人力、物力,像通信/電力設(shè)施所處環(huán)境越來越復雜,人煙稀少、交通不便、危險度高等都增大了維護的難度和費用。這對電源設(shè)備的監(jiān)控管理提出了更高的要求。電源監(jiān)控系統(tǒng)需要對系統(tǒng)中各狀態(tài)量進行監(jiān)視,還必須能對各供電支路進行控制和管理。維護管理人員可遠程進行數(shù)據(jù)查詢、控制等維護工作,并可利用友好的人機界面方便地得到需要的信息。
數(shù)字化技術(shù)的發(fā)展表現(xiàn)出了傳統(tǒng)技術(shù)無法比擬的優(yōu)勢,整個電源監(jiān)控系統(tǒng)的信號采樣、處理、控制、通信等均可通過數(shù)字化技術(shù)實現(xiàn)。全數(shù)字化的控制技術(shù)可有效縮小設(shè)備的體積,降低設(shè)備的成本,但同時大大提高設(shè)備的可靠性、智能化和用戶體驗。隨著模塊智能化程度的提高,新型電源監(jiān)控系統(tǒng)的維修性也得到了提高。
隨著嵌入式技術(shù)的發(fā)展,使用嵌入式實時操作系統(tǒng)是電源監(jiān)控系統(tǒng)的必然選擇。一方面是因為嵌入式實時操作系統(tǒng)具有良好的可移植性和較高的可靠性;另一方面是因為隨著電源監(jiān)控系統(tǒng)性能的不斷提升,僅靠傳統(tǒng)的單片機已無法適應(yīng)新的需求。ARM作為當今嵌入式技術(shù)的代表,不僅具有上述的所有優(yōu)勢,且成本很低,具有很高的性價比。本文中設(shè)計的系統(tǒng)選用了TI公司生產(chǎn)的Luminary Cortex-M3系列ARM中的LM3S9B96芯片。
1、工作原理
圖1以8路用電設(shè)備的電源監(jiān)控為例,給出了監(jiān)控系統(tǒng)的原理框圖。
圖1 8路電源監(jiān)控系統(tǒng)原理框圖
8路設(shè)備均從總電源處取電,各供電支路的工作方式完全一樣。電源監(jiān)控系統(tǒng)啟動之后,主芯片處于上電復位狀態(tài),其GPIOF的8個I/O引腳處于低電平,此時電控開關(guān)保持關(guān)斷狀態(tài),即供電支路處于斷電狀態(tài)。當主芯片內(nèi)核和各外設(shè)初始化成功后,通過其內(nèi)部嵌入式程序控制GPIOF的8個I/O引腳輸出變?yōu)楦唠娖?,相?yīng)地各供電支路處于通電狀態(tài),開始正常工作。
采集模塊包含電流傳感器和分壓電路,電流傳感器可測得流過供電支路的電流值,分壓電路將供電支路的電壓值調(diào)整到主芯片ADC采樣的范圍內(nèi),二者均為模擬值。檢測值經(jīng)過AD采樣后,可在主芯片內(nèi)運算得到各供電支路的電流和電壓值,并與預(yù)設(shè)的電流和電壓門限進行比較。若在門限范圍內(nèi)則表示該供電支路工作正常,而在門限范圍外則表示該供電支路發(fā)生了過流、過壓、欠壓等異常,主芯片通過將GPIOF相應(yīng)引腳的輸出變?yōu)榈碗娖絹碜詣咏o該支路斷電,在經(jīng)過檢查排除故障后可通過上位機下發(fā)指令控制該供電支路通電。
上位機與嵌入式下位機通過以太網(wǎng)進行通信,上位機可向下位機下發(fā)指令控制指定供電支路的通斷,也可設(shè)置各供電支路的電流和電壓門限值。每隔一定的時間,各供電支路的電流、電壓值及各種正常/異常狀態(tài)由下位機發(fā)送至上位機,通過上位機顯控軟件可觀察各供電支路的工作狀態(tài)。
2、設(shè)計與實現(xiàn)
2.1核心模塊
核心模塊采用TI公司生產(chǎn)的LuminaryCortex-M3系列ARM中的LM3S9B96芯片,該芯片具有80MHz的運行速度,內(nèi)部集成了大容量的256KB單周期FlashROM和96KB單周期SRAM,具有16通道10bit分辨率的AD采樣模塊、支持;LwIP協(xié)議的10/100M自適應(yīng)以太網(wǎng)模塊和豐富的I/O接口。
LM3S9B96有65個I/O接口,設(shè)計時選取GPIOF組8個I/O接口作為控制引腳;各供電支路需要采集電壓和電流兩種值,16通道AD采樣模塊可滿足8路供電支路的采樣需求;集成的MAC+PHY外設(shè)也可實現(xiàn)與上位機的以太網(wǎng)通信;大容量的內(nèi)置存儲空間為復雜的程序提供了合適的平臺。根據(jù)上述分析,LM3S9B96芯片非常適合本監(jiān)控系統(tǒng),并可極大簡化電路設(shè)計。
2.2控制模塊
各供電支路控制模塊的設(shè)計如圖2所示。根據(jù)各支路設(shè)備需要的電流值選擇合適的繼電器作為電子開關(guān),并且在控制引腳和繼電器間加入光耦隔離保護及供電通斷指示燈。
當主芯片GPIOF控制引腳為低電平時,LED燈滅,繼電器3腳輸入與5腳輸出斷開,該供電支路斷電;當主芯片GPIOF控制引腳為高電平時,光耦輸出為低電平,LED燈亮,繼電器3腳輸入與5腳輸出導通,該供電支路通電。
圖2供電支路控制模塊設(shè)計圖
2.3采集模塊
各供電支路采集模塊的設(shè)計如圖3所示。電流傳感器串聯(lián)在電源回路內(nèi),其內(nèi)部霍爾傳感器會將支路電流產(chǎn)生的磁場以電壓的形式輸出至主芯片的AD采樣模塊,根據(jù)廠家提供的手冊可計算出對應(yīng)的電流值。電壓值的采集電路采用電阻分壓電路的形式,采樣電壓值亦被輸出至AD采樣模塊,通過簡單換算即可得到實際電壓值。實際應(yīng)用中,根據(jù)用電設(shè)備的電流和電壓值可靈活的選擇合適的電流傳感器和分壓電路阻值。需要注意的是,輸出到AD采樣模塊的電流和電壓值必須在其 0-3V的采樣范圍內(nèi)。
圖3供電支路采樣模塊設(shè)計圖
2.4通信模塊
通信模塊用來實現(xiàn)上位機與下位機之間的通信,本設(shè)計中下位機的以太網(wǎng)通信依靠主芯片內(nèi)置的MAC+PHY來實現(xiàn),該模塊支持10/100M自適應(yīng)以太網(wǎng)。
由于嵌入式處理器內(nèi)部的運算及存儲資源相對PC來說非常有限,因此就必須在資源受限的情況下實現(xiàn)及處理Internet協(xié)議。LM3S9B96就是在這樣的條件下占用盡量小的資源實現(xiàn)一個輕型的TCP/IP協(xié)議棧,該協(xié)議棧叫做LwIP。與許多其它的TCP/IP實現(xiàn)一樣,LwIP也是以分層的協(xié)議為參照,每一個協(xié)議作為一個模塊被實現(xiàn)。LwIP由TCP/IP實現(xiàn)模塊、操作系統(tǒng)模擬層、緩沖語內(nèi)存管理子系統(tǒng)、網(wǎng)絡(luò)接口函數(shù)及一組Internet校驗和計算函數(shù)組成。[!--empirenews.page--]
為便于二次開發(fā),TI官方提供了豐富的底層驅(qū)動程序及詳細API說明,本設(shè)計在此基礎(chǔ)上編寫了整個以太網(wǎng)通信程序。以太網(wǎng)通信功能的實現(xiàn),使得本電源監(jiān)控系統(tǒng)除了具備智能化外,還具備了遠程監(jiān)控的能力,極大的拓展了該系統(tǒng)的應(yīng)用范圍。
2.5顯控模塊
顯控模塊實在上位機開發(fā)的軟件功能模塊,本設(shè)計中該模塊的開發(fā)基于VC++6.0。顯控主要實現(xiàn)與下位機的通信控制、各供電支路電流和電壓門限值在線設(shè)置及采集值的可視化顯示。
設(shè)計過程中必須確定顯控模塊與下位機軟件的數(shù)據(jù)格式,上位機下發(fā)的指令有更改門限值、查詢門限值、更改通斷狀態(tài)、信道測試等,下位機上發(fā)的參數(shù)有更改門限值應(yīng)答、返回當前門限值、通斷狀態(tài)返回、異常狀態(tài)返回和信道測試等。這些指令確保了整個監(jiān)控系統(tǒng)處于閉環(huán)狀態(tài),在任何時刻系統(tǒng)的狀態(tài)和檢測值都是可視的,提高了整個系統(tǒng)的可視化和可靠性。
3、結(jié)論
本文中描述的電源監(jiān)控系統(tǒng)已實際應(yīng)用在多個項目中,包括一些環(huán)境較惡劣的場合,整套系統(tǒng)運行穩(wěn)定,并且借助以太網(wǎng)實現(xiàn)了遠程智能化監(jiān)控。另外,本設(shè)計也存在可以改進和提高的地方。首先是提高電流和電壓值采樣的精度,從而滿足一些對供電電源精度要求極高的領(lǐng)域;其次是可以考慮加入無線通信功能,從而減少系統(tǒng)布線的復雜度并拓寬應(yīng)用場合。隨著技術(shù)的不斷完善,該類電源監(jiān)控系統(tǒng)必將在更多領(lǐng)域獲得廣泛應(yīng)用。