當前位置:首頁 > 嵌入式 > 嵌入式教程

1引言

追尾碰撞是目前我國高速公路各類事故中較多的一類事故,占事故總數(shù)的33%左右。誘發(fā)的主要原因為:(1)駕駛員精力不集中,致使疏忽大意或措施不當;(2)疲勞駕駛,在高速公路上長時間高速行駛,加之道路景觀單一,駕駛員很容易疲勞,導致駕駛員判斷能力和操作準確性下降;(3)異常天氣(如雨、雪、霧),能見度低,行車的安全距離不能保證,同時受到當時路面條件的影響,制動效果難以保障;(4)車輛本身不能滿足高速公路行駛的性能需求。根據(jù)對沈大、合寧、廣深、西臨等高速公路交通事故的統(tǒng)計分析,交通事故類型如表1所示。



有關研究表明,若駕駛員能夠提早1秒意識到有事故危險并采取相應的措施,則90%的追尾事故和60%的正面碰撞事故都可以避免。美、英、德、日的不少汽車公司(如德國的奔馳、日本的三菱、馬自達、日產(chǎn)、本田及富土重工等公司)都開展了高速公路車載毫米波雷達防追尾碰撞預警系統(tǒng)的研究。

我國主要有清華大學、浙江大學、上海交通大學、吉林大學等高校和部分研究所在進行車輛主動防撞報警、輔助駕駛系統(tǒng)等相關技術研究。例如上海交通大學卓斌教授等研究開發(fā)了“人—車—路綜合環(huán)境下主動安全性模擬系統(tǒng)”,實現(xiàn)了行車環(huán)境數(shù)據(jù)采集、通訊和駕駛軟件仿真的編制。在現(xiàn)行的高速公路交通管理中,為保證行車安全,常依據(jù)公路工程技術標準中的行車視距要求,規(guī)定一定行駛速度下的車輛必須保持相應的間距。那么如何準確跟蹤車輛之間的距離信息,就成了汽車毫米波雷達防追尾預警系統(tǒng)的關鍵。

把交互多模型(IMM)機動目標跟蹤算法運用到汽車毫米波雷達防追尾預警系統(tǒng)當中,當毫米波雷達存在一定測量誤差和噪聲時,目標跟蹤算法能使毫米波雷達能夠準確地探知前方車輛的運動狀態(tài),如車間距離、行駛速度等,從而提高駕駛員在高速公路上行駛安全性。

2汽車防追尾預警系統(tǒng)工作原理

高速公路汽車防追尾預警系統(tǒng)由信息采集單元、信息處理單元和信息輸出裝置3部分組成。信息采集單元通常由毫米波雷達、自車速度傳感器、轉向角傳感器、制動傳感器、加速踏板傳感器和路面情況選擇開關等組成;信息處理單元主要為中央處理器;信息輸出裝置包括液晶顯示屏、報警蜂鳴器、報警指示燈等,圖1是車載雷達防追尾預警系統(tǒng)組成方框圖。



信息采集單元不斷地采集相關信息,利用車載毫米波雷達獲得前方目標車輛的運動信息,如車間距離、相對速度;利用自車傳感系統(tǒng)獲得自車運行狀態(tài)信息,如自車速度、有無轉向、有無制動等,并將此信息傳送至信息處理單元。信息處理單元根據(jù)自車速度、相對速度以及所建立的安全距離計算模型,計算出當前應保持的安全距離并與實測車間距離相比較。若實測車間距離大于提醒報警距離,則進入下一工作循環(huán);若實測車間距離小于提醒報警距離,則進行一次報警,提醒駕駛員松油門并做好剎車準備;當實測車間距離小于危險報警距離,則進行二次報警,促使駕駛員立即制動,以避免追尾事故的發(fā)生。液晶顯示屏用于顯示兩車間實際距離及相對速度,報警蜂鳴器和報警指示燈用于提供聲音報警和指示燈報警,及時的報警可以有效地提醒駕駛員,促使其采取合適的應對措施。

汽車在道路上行駛時,經(jīng)常要進行加速、減速和轉彎,其運動狀態(tài)是不斷改變的。行駛中的汽車所處的道路環(huán)境是相當復雜的,而安裝車載毫米波雷達的汽車本身也是不時地處于機動狀態(tài)之中,因此車載雷達所探測的目標也是在不停的變化當中,導致所測兩汽車之間的距離數(shù)據(jù)存在一定測量誤差和噪聲,就會使汽車防追尾預警系統(tǒng)產(chǎn)生虛警或漏警。過高虛警率的雷達不但不能減輕駕駛者的工作負擔,反而會造成駕駛者精神高度緊張,起到相反的效果。因此,采用合適的機動目標跟蹤算法,準確地跟蹤自車前面的車輛目標的狀態(tài)、及時估計行車的危險程度是車載雷達測距系統(tǒng)的一項主要任務。



3交互多模型機動車輛跟蹤算法

交互多模算法是Blom和Bar-Shalom在多模型基礎上提出的,是在廣義偽貝葉斯算法基礎上,以卡爾曼濾波為出發(fā)點,提出的一種具有馬爾可夫切換系數(shù)的交互式多模型算法,其中多種模型并行工作,目標狀態(tài)估計是多個濾波器交互作用的結果。該算法不需要機動檢測,同時達到了全面自適應能力。IMM算法的基本思想是在每一時刻,假設某個模型在現(xiàn)在時刻有效的條件下,通過混合前一時刻所有濾波器的狀態(tài)估計值來獲得與這個特定模型匹配的濾波器的初始條件;然后對每個模型并行實現(xiàn)正規(guī)濾波(預測與修正)步驟;最后,以模型匹配似然函數(shù)為基礎更新模型概率,并組合所有濾波器修正后的狀態(tài)估計值(加權和)以得到狀態(tài)估計。一個模型有效的概率在狀態(tài)估值和協(xié)方差的加權綜合計算中有重要作用。IMM的設計參數(shù)為:不同匹配和結構的設置模型;不同模型的處理噪聲密度(一般來講,非機動模型具有低水平測量噪聲,機動模型具有較高水平的噪聲);模型之間的切換結構和轉移概率。與其他的機動目標的跟蹤算法相比,比如辛格(Singer)算法、輸入估計(IE)算法、變維濾波(VD)算法等,交互多模(IMM)算法的優(yōu)點是它不需要機動檢測器監(jiān)視機動[10],從而不會產(chǎn)生因模型在機動與非機動之間切換而帶來的誤差。其算法原理如下:

假定有r個模型:


其中X(k)為目標狀態(tài)向量,Aj為狀態(tài)轉移矩陣,Gj為系統(tǒng)噪聲作用矩陣,Wj(k)是均值為零,協(xié)方差矩陣為Qj的白噪聲序列。

可用一個馬爾可夫鏈來控制這些模型之間的轉換,馬爾可夫鏈的轉移概率矩陣為:



其中Z(k)為量測向量,H為觀測矩陣,V(k)為量測噪聲,已知其方差為R(k)。W(k)和V(k)是零均值且相互獨立。

IMM算法可歸納如下4個步驟。

步驟1輸入交互:

根據(jù)兩模型(k-l)時刻的濾波值和模型概率,計算交互混合后的濾波初始值,包括模型1的濾波初始值:濾波估計值X01

(k-1)和估計協(xié)方差μ1(k-1);模型2的濾波初始值:濾波估計值X02

(k-1)和估計誤差協(xié)方差P02

(k-1)。設系統(tǒng)在(k-1)時刻模型1概率為μ1(k-1),濾波值X1

(k-1),估計誤差協(xié)方差為P2(k-1)。模型2的概率為μ2(k-1),濾波值為X2

(k-1),系統(tǒng)估計誤差協(xié)方差為P2(k-1)。則進一步推廣到r個模型,交互后r模型的濾波初始值為:



步驟2模型條件濾波:

對應于模型Mj(k),以X0j

(k-1|k-1),P0j(k-1|k-1)及Z(k)作為輸入進行卡爾曼濾波。

卡爾曼預測方程:


i=1rΛj(k)cj_,而Λj(k)為觀測Z(k)的似然函數(shù):


圖2為IMM算法結構原理圖


4車輛運動模型分析與IMM算法跟蹤仿真

試驗設計:考慮兩輛車在道路上同向行駛,在0~10s時,兩車均保持勻速直線運動,由安裝在后車上的車載毫米波雷達檢測出與前車的距離為100m,相對速度為-3m/s,方位角2°。

在10~15s時,前車向右偏轉,與后車的相對角加速度為1°s2。

后車加速,與前車的縱向相對加速度為a=-1.8m/s2。雷達的掃描周期為T=0.1s,系統(tǒng)噪聲為σα=0.3m/s,σβ=0.3°/s。量測誤差為σ1=1m?σ2=0.5m/s?σ3=0.2°/s。

車輛勻速直線運動模型:



采用蒙特卡洛方法對跟蹤濾波器進行仿真分析,仿真次數(shù)為400次。以下運用Matlab7.0仿真的結果。

由圖3~圖6仿真結果表明,該算法能夠有效地跟蹤前方車輛的運動信息,并且誤差較小,精度較高。








5總結

重點研究了交互多模型機動目標跟蹤算法在車載毫米波雷達防追尾預警系統(tǒng)中的應用,介紹機動目標跟蹤算法原理和步驟,并以高速公路上行駛的汽車為對象進行防真,結果表明算法具有結構簡單、運算量小、精度較高的優(yōu)點,能夠提高車載雷達防追尾預警系統(tǒng)的使用效率,從而提高車輛駕駛的安全性,具有一定的應用價值。

本站聲明: 本文章由作者或相關機構授權發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點,本站亦不保證或承諾內(nèi)容真實性等。需要轉載請聯(lián)系該專欄作者,如若文章內(nèi)容侵犯您的權益,請及時聯(lián)系本站刪除。
換一批
延伸閱讀

9月2日消息,不造車的華為或將催生出更大的獨角獸公司,隨著阿維塔和賽力斯的入局,華為引望愈發(fā)顯得引人矚目。

關鍵字: 阿維塔 塞力斯 華為

加利福尼亞州圣克拉拉縣2024年8月30日 /美通社/ -- 數(shù)字化轉型技術解決方案公司Trianz今天宣布,該公司與Amazon Web Services (AWS)簽訂了...

關鍵字: AWS AN BSP 數(shù)字化

倫敦2024年8月29日 /美通社/ -- 英國汽車技術公司SODA.Auto推出其旗艦產(chǎn)品SODA V,這是全球首款涵蓋汽車工程師從創(chuàng)意到認證的所有需求的工具,可用于創(chuàng)建軟件定義汽車。 SODA V工具的開發(fā)耗時1.5...

關鍵字: 汽車 人工智能 智能驅動 BSP

北京2024年8月28日 /美通社/ -- 越來越多用戶希望企業(yè)業(yè)務能7×24不間斷運行,同時企業(yè)卻面臨越來越多業(yè)務中斷的風險,如企業(yè)系統(tǒng)復雜性的增加,頻繁的功能更新和發(fā)布等。如何確保業(yè)務連續(xù)性,提升韌性,成...

關鍵字: 亞馬遜 解密 控制平面 BSP

8月30日消息,據(jù)媒體報道,騰訊和網(wǎng)易近期正在縮減他們對日本游戲市場的投資。

關鍵字: 騰訊 編碼器 CPU

8月28日消息,今天上午,2024中國國際大數(shù)據(jù)產(chǎn)業(yè)博覽會開幕式在貴陽舉行,華為董事、質量流程IT總裁陶景文發(fā)表了演講。

關鍵字: 華為 12nm EDA 半導體

8月28日消息,在2024中國國際大數(shù)據(jù)產(chǎn)業(yè)博覽會上,華為常務董事、華為云CEO張平安發(fā)表演講稱,數(shù)字世界的話語權最終是由生態(tài)的繁榮決定的。

關鍵字: 華為 12nm 手機 衛(wèi)星通信

要點: 有效應對環(huán)境變化,經(jīng)營業(yè)績穩(wěn)中有升 落實提質增效舉措,毛利潤率延續(xù)升勢 戰(zhàn)略布局成效顯著,戰(zhàn)新業(yè)務引領增長 以科技創(chuàng)新為引領,提升企業(yè)核心競爭力 堅持高質量發(fā)展策略,塑強核心競爭優(yōu)勢...

關鍵字: 通信 BSP 電信運營商 數(shù)字經(jīng)濟

北京2024年8月27日 /美通社/ -- 8月21日,由中央廣播電視總臺與中國電影電視技術學會聯(lián)合牽頭組建的NVI技術創(chuàng)新聯(lián)盟在BIRTV2024超高清全產(chǎn)業(yè)鏈發(fā)展研討會上宣布正式成立。 活動現(xiàn)場 NVI技術創(chuàng)新聯(lián)...

關鍵字: VI 傳輸協(xié)議 音頻 BSP

北京2024年8月27日 /美通社/ -- 在8月23日舉辦的2024年長三角生態(tài)綠色一體化發(fā)展示范區(qū)聯(lián)合招商會上,軟通動力信息技術(集團)股份有限公司(以下簡稱"軟通動力")與長三角投資(上海)有限...

關鍵字: BSP 信息技術
關閉
關閉