小波神經(jīng)網(wǎng)絡(luò)應(yīng)用于模擬電路故障診斷的進(jìn)展
掃描二維碼
隨時(shí)隨地手機(jī)看文章
論文摘要:分析了模擬電路故障診斷的重要性和目前存在的困難,對(duì)基于小渡分析理論和神經(jīng)網(wǎng)絡(luò)理論的模擬電路故障診斷方法進(jìn)行了綜述.指出了小波神經(jīng)網(wǎng)絡(luò)應(yīng)用于模擬電路故障診斷存在的問題和未來的應(yīng)用前景。
模擬電路故障診斷在理論上可概括為:在已知網(wǎng)絡(luò)拓?fù)浣Y(jié)構(gòu)、輸人激勵(lì)和故障響應(yīng)或可能已知部分元件參數(shù)的情況下,求故障元件的參數(shù)和位置。
盡管目前模擬電路故障診斷理論和方法都取得了不少成就,提出了很多故障診斷方法,如故障字典法、故障參數(shù)識(shí)別法、故障驗(yàn)證法等。但是由于模擬電路測(cè)試和診斷有其自身困難,進(jìn)展比較緩慢。其主要困難有:模擬電路中的故障模型比較復(fù)雜,難以作簡(jiǎn)單的量化;模擬電路中元件參數(shù)具有容差,增加了故障診斷的難度;在模擬電路中廣泛存在著非線性問題,為故障的定位診斷增加了難度;在一個(gè)實(shí)用的模擬電路中,幾乎無一例外地存在著反饋回路,仿真時(shí)需要大量的復(fù)雜計(jì)算;實(shí)際的模擬電路中可測(cè)電壓的節(jié)點(diǎn)數(shù)非常有限.導(dǎo)致可用于作故障診斷的信息量不夠充分,造成故障定位的不確定性和模糊性。
因此,以往對(duì)模擬電路故障診斷的研究主要停留在中小規(guī)模線性無容差或小容差的情況,有些方法也已成功地應(yīng)用于工程實(shí)際。但如何有效地解決模擬電路的容差和非線性問題,如何解決故障診斷的模糊性和不確定性等是今后迫切需要解決的問題。小波神經(jīng)網(wǎng)絡(luò)則因其利于模擬人類處理問題的過程、容易顧及人的經(jīng)驗(yàn)且具有一定的學(xué)習(xí)能力等特點(diǎn),所以在這一領(lǐng)域得到了廣泛應(yīng)用。
1小波分析理論在模擬電路故障診斷中的應(yīng)用現(xiàn)狀分析
簡(jiǎn)單地講,小波就是一個(gè)有始有終的小的“波浪”小波分析源于信號(hào)分析,源于函數(shù)的伸縮和平移,是Fourier分析、Gabor分析和短時(shí)Fourier分析發(fā)展的直接結(jié)果。小波分析的基木原理是通過小波母函數(shù)在尺度上的伸縮和時(shí)域上的平移來分析信號(hào),適當(dāng)選擇母函數(shù).可以使擴(kuò)張函數(shù)具有較好的局部性,小波分析是對(duì)信號(hào)在低頻段進(jìn)行有效的逐層分解,而小波包分析是對(duì)小波分析的一種改進(jìn),它為信號(hào)提供了一種更加精細(xì)的分析方法,對(duì)信號(hào)在全頻段進(jìn)行逐層有效的分解,更有利于提取信號(hào)的特征。因此,它是一種時(shí)頻分析方法。在時(shí)頻域具有良好的局部化性能并具有多分辨分析的特性,非常適合非平穩(wěn)信號(hào)的奇異性分析。如:利用連續(xù)小波變換可以檢測(cè)信號(hào)的奇異性,區(qū)分信號(hào)突變和噪聲,利用離散小波變換可以檢測(cè)隨機(jī)信號(hào)頻率結(jié)構(gòu)的突變。
小波變換故障診斷機(jī)理包括:利用觀測(cè)器信號(hào)的奇異性進(jìn)行故障診斷以及利用觀測(cè)器信號(hào)頻率結(jié)構(gòu)的變化進(jìn)行故障診斷。小波變換具有不需要系統(tǒng)的數(shù)學(xué)模型、故障檢測(cè)靈敏準(zhǔn)確、運(yùn)算量小、對(duì)噪聲的抑制能力強(qiáng)和對(duì)輸入信號(hào)要求低的優(yōu)點(diǎn)。但在大尺度下由于濾波器的時(shí)域?qū)挾容^大,檢測(cè)時(shí)會(huì)產(chǎn)生時(shí)間延遲,且不同小波基的選取對(duì)診斷結(jié)果也有影響。在模擬電路故障診斷中,小波變換被有效地用來提取故障特征信息即小波預(yù)處理器之后,再將這些故障特征信息送人故障分類處理器進(jìn)行故障診斷。小波分析理論的應(yīng)用一般被限制在小規(guī)模的范圍內(nèi),其主要原因是大規(guī)模的應(yīng)用對(duì)小波基的構(gòu)造和存儲(chǔ)需要的花費(fèi)較大。
2神經(jīng)網(wǎng)絡(luò)理論在模擬電路故障診斷中的應(yīng)用分析
人工神經(jīng)網(wǎng)絡(luò)(ANN)是在現(xiàn)代神經(jīng)科學(xué)研究成果的基礎(chǔ)上提出來的,是一種抽象的數(shù)學(xué)模型,是對(duì)人腦功能的模擬。經(jīng)過十幾年的發(fā)展,人工神經(jīng)網(wǎng)絡(luò)已形成了數(shù)十種網(wǎng)絡(luò),包括多層感知器Kohomen自組織特征映射、Hopfield網(wǎng)絡(luò)、自適應(yīng)共振理論、ART網(wǎng)絡(luò)、RBF網(wǎng)絡(luò)、概率神經(jīng)網(wǎng)絡(luò)等。這些網(wǎng)絡(luò)由于結(jié)構(gòu)不同,應(yīng)用范圍也各不相同。由于人工神經(jīng)網(wǎng)絡(luò)本身不僅具有非線性、自適應(yīng)性、并行性、容錯(cuò)性等優(yōu)點(diǎn)以及分辨故障原因、故障類型的能力外,而且訓(xùn)練過的神經(jīng)網(wǎng)絡(luò)能儲(chǔ)存有關(guān)過程的知識(shí),能直接從定量的、歷史故障信息中學(xué)習(xí)。所以在20世紀(jì)80年代末期,它已開始應(yīng)用于模擬電路故障診斷。隨著人工神經(jīng)網(wǎng)絡(luò)的不斷成熟及大量應(yīng)用,將神經(jīng)網(wǎng)絡(luò)廣泛用于模擬電路的故障診斷已是發(fā)展趨勢(shì)。BY神經(jīng)網(wǎng)絡(luò)由于具有良好的模式分類能力,尤其適用于模擬電路故障診斷領(lǐng)域,因而在模擬電路故障診斷系統(tǒng)中具有廣泛的應(yīng)用前景,也是目前模擬電路故障診斷中用得較多而且較為有效的一種神經(jīng)網(wǎng)絡(luò)。
3小波神經(jīng)網(wǎng)絡(luò)的應(yīng)用進(jìn)展分析
3,1小波分析理論與神經(jīng)網(wǎng)絡(luò)理論結(jié)合的必要性
在神經(jīng)網(wǎng)絡(luò)理論應(yīng)用于模擬電路故障診斷的過程中,神經(jīng)網(wǎng)路對(duì)于隱層神經(jīng)元節(jié)點(diǎn)數(shù)的確定、各種參數(shù)的初始化和神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)的構(gòu)造等缺乏更有效的理論性指導(dǎo)方法,而這些都將直接影響神經(jīng)網(wǎng)絡(luò)的實(shí)際應(yīng)用效果。小波分析在時(shí)域和頻域同時(shí)具有良好的局部化特性,而神經(jīng)網(wǎng)絡(luò)則具有自學(xué)習(xí)、并行處理、自適應(yīng)、容錯(cuò)性和推廣能力二因此把小波分析和神經(jīng)網(wǎng)絡(luò)兩者的優(yōu)點(diǎn)結(jié)合起來應(yīng)用于故障診斷是客觀實(shí)際的需要。
目前小波分析與神經(jīng)網(wǎng)絡(luò)的結(jié)合有兩種形式,一種是先利用小波變換對(duì)信號(hào)進(jìn)行預(yù)處理,提取信號(hào)的特征向量作為神經(jīng)網(wǎng)絡(luò)的輸人,另一種則是采用小波函數(shù)和尺度函數(shù)形成神經(jīng)元,達(dá)到小波分析和神經(jīng)網(wǎng)絡(luò)的直接融合第一種結(jié)合方式是小波神經(jīng)網(wǎng)絡(luò)的松散型結(jié)合,第二種結(jié)合方式是小波神經(jīng)網(wǎng)絡(luò)的緊致型結(jié)合。
3.2小波分析理論與神經(jīng)網(wǎng)絡(luò)理論的結(jié)合形式
小波與神經(jīng)網(wǎng)絡(luò)的松散型結(jié)合,即:用小波分析或小波包分析作為神經(jīng)網(wǎng)絡(luò)的前置處理手段,為神經(jīng)網(wǎng)絡(luò)提供輸人特征向魚具體來說就是利用小波分析或小波包分析,把信號(hào)分解到相互獨(dú)立的頻帶之內(nèi),各頻帶內(nèi)的能童值形成一個(gè)向覺,該向童對(duì)不同的故障對(duì)應(yīng)不同的值,從而可作為神經(jīng)網(wǎng)絡(luò)的輸入特征向量一旦確定神經(jīng)網(wǎng)絡(luò)的輸入特征向童,再根據(jù)經(jīng)驗(yàn)確定采用哪種神經(jīng)網(wǎng)絡(luò)及隱層數(shù)和隱層單元數(shù)等,就可以利用試驗(yàn)樣本對(duì)神經(jīng)網(wǎng)絡(luò)進(jìn)行訓(xùn)練,調(diào)整權(quán)值,從而建立起所需的小波神經(jīng)網(wǎng)絡(luò)模型。
小波與神經(jīng)網(wǎng)絡(luò)的緊致型結(jié)合,即:用小波函數(shù)和尺度函數(shù)形成神經(jīng)元,達(dá)到小波分析和神經(jīng)網(wǎng)絡(luò)的直接融合,稱為狹義上的小波神經(jīng)網(wǎng)絡(luò),這也是常說的小波神經(jīng)網(wǎng)絡(luò)。它是以小波函數(shù)或尺度函數(shù)作為激勵(lì)函數(shù),其作用機(jī)理和采用Sigmoid函數(shù)的多層感知器基本相同。故障診斷的實(shí)質(zhì)是要實(shí)現(xiàn)癥狀空間到故障空間的映射,這種映射也可以用函數(shù)逼近來表示。小波神經(jīng)網(wǎng)絡(luò)的形成也可以從函數(shù)逼近的角度加以說明。常見的小波神經(jīng)網(wǎng)絡(luò)有:利用尺度函數(shù)作為神經(jīng)網(wǎng)絡(luò)中神經(jīng)元激勵(lì)函數(shù)的正交基小波網(wǎng)絡(luò)、自適應(yīng)小波神經(jīng)網(wǎng)絡(luò)、多分辨率小波網(wǎng)絡(luò)、區(qū)間小波網(wǎng)絡(luò)等。
3.3小波分析理論與神經(jīng)網(wǎng)絡(luò)理論結(jié)合的優(yōu)點(diǎn)
小波神經(jīng)網(wǎng)絡(luò)具有以下優(yōu)點(diǎn):一是可以避免M LY等神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)設(shè)計(jì)的育目性;二是具有逼近能力強(qiáng)、網(wǎng)絡(luò)學(xué)習(xí)收斂速度快、參數(shù)的選取有理論指導(dǎo)、有效避免局部最小值問題等優(yōu)點(diǎn)。
在模擬電路故障診斷領(lǐng)域,小波神經(jīng)網(wǎng)絡(luò)還是一個(gè)嶄新的、很有前途的應(yīng)用研究方向。隨著小波分析理論和神經(jīng)網(wǎng)絡(luò)理論的不斷發(fā)展,小波神經(jīng)網(wǎng)絡(luò)應(yīng)用于模擬電路故障診斷領(lǐng)域?qū)⑷找娉墒臁?/p>
4結(jié)語(yǔ)
小波分析理論和神經(jīng)網(wǎng)絡(luò)理論在模擬電路故障診斷領(lǐng)域具有廣闊的應(yīng)用前景。小波神經(jīng)理論的應(yīng)用將進(jìn)一步推動(dòng)模擬電路故障診斷理論和方法的發(fā)展,使其更趨完善和更具廣泛適用性,為實(shí)現(xiàn)復(fù)雜的大規(guī)模電路的故障診斷提供更為有效、更具實(shí)用價(jià)值的方法,是今后模擬電路故障診斷的發(fā)展方向。
更多好文請(qǐng)您關(guān)注:21ic智能電網(wǎng)