當(dāng)前位置:首頁 > 通信技術(shù) > 通信技術(shù)
[導(dǎo)讀]摘要:設(shè)計一種嵌入式衛(wèi)星/MEMS組合導(dǎo)航模塊。該模塊采用北京時代民芯科技有限公司的國產(chǎn)化GPS/BD多模導(dǎo)航接收機(jī),實(shí)現(xiàn)與MEMS慣性器件的軟硬件融合?;诠こ袒瘧?yīng)用,提出一種高可靠擴(kuò)展卡爾曼濾波器濾波算法,實(shí)時校

摘要:設(shè)計一種嵌入式衛(wèi)星/MEMS組合導(dǎo)航模塊。該模塊采用北京時代民芯科技有限公司的國產(chǎn)化GPS/BD多模導(dǎo)航接收機(jī),實(shí)現(xiàn)與MEMS慣性器件的軟硬件融合。基于工程化應(yīng)用,提出一種高可靠擴(kuò)展卡爾曼濾波器濾波算法,實(shí)時校準(zhǔn)各種誤差項(xiàng),改善組合導(dǎo)航模塊性能。在靜態(tài)情況下,模塊姿態(tài)角誤差小于0.2°,航向角誤差小于0.5°。在動態(tài)情況下,姿態(tài)角與航向角誤差小于1°,如果衛(wèi)星導(dǎo)航突然中斷,將能持續(xù)30秒,定位精度維持在20米內(nèi)。

引言

隨著北斗導(dǎo)航應(yīng)用的不斷推廣,國產(chǎn)導(dǎo)航芯片和模塊持續(xù)升級,各領(lǐng)域應(yīng)用對北斗導(dǎo)航產(chǎn)品性能提出新的要求:低成本、低功耗、小型化、高精度。

其中,GPS/BD多模導(dǎo)航的實(shí)現(xiàn),很大程度滿足國內(nèi)外需求,集合MEMS慣性傳感器的組合導(dǎo)航模塊,進(jìn)一步豐富多層面用戶應(yīng)用。與傳統(tǒng)導(dǎo)航系統(tǒng)相比,衛(wèi)星/MEMS組合導(dǎo)航模塊,采用較低成本的MEMS慣性器件,極大降低導(dǎo)航系統(tǒng)成本、功耗和體積,與此同時,MEMS慣性器件具有瞬間較高精度的特點(diǎn),彌補(bǔ)衛(wèi)星導(dǎo)航不連續(xù)、輸出頻率不高、易失鎖等不足[1~3]。

由于MEMS-IMU(IMU,慣性測量單元)精度仍處于較低水平,無法單獨(dú)實(shí)現(xiàn)導(dǎo)航。通常采用MEMS-IMU與衛(wèi)星導(dǎo)航接收機(jī)、磁強(qiáng)計等相結(jié)合的方式,構(gòu)建組合導(dǎo)航模塊,實(shí)現(xiàn)較高精度姿態(tài)控制與導(dǎo)航定位[2]。

為了適合特定導(dǎo)航應(yīng)用,提出一種衛(wèi)星/MEMS組合導(dǎo)航模塊用工程化濾波算法。并在嵌入式平臺上實(shí)現(xiàn)。

衛(wèi)星/MEMS組合導(dǎo)航,通過算法實(shí)現(xiàn)角速度校準(zhǔn),加速度校準(zhǔn),以及磁校準(zhǔn);估計載體姿態(tài)角度,位置和速度信息,并以較高的輸出速率實(shí)時更新。該系統(tǒng)中采用擴(kuò)展卡爾曼濾波器(EKF)估算并校準(zhǔn)系統(tǒng)狀態(tài)量。通過融合衛(wèi)星導(dǎo)航信息和磁強(qiáng)計信息,實(shí)時校準(zhǔn)系統(tǒng)姿態(tài)、位置、速度和傳感器誤差。該EKF融合算法,考慮到傳感器主要特性:零偏、標(biāo)度因數(shù)誤差、正交耦合誤差等。此外,由于磁強(qiáng)計感測地磁場強(qiáng)度時,會受到硬鐵和軟鐵干擾,因此在濾波器中對其進(jìn)行估計。在靜態(tài)情況下,系統(tǒng)姿態(tài)角誤差小于0.2°,航向角誤差小于0.5°。在動態(tài)情況下,姿態(tài)角與航向角誤差小于1°,如果衛(wèi)星導(dǎo)航突然中斷,將能持續(xù)30秒,定位精度維持在20米內(nèi)。

模塊設(shè)計

綜合考慮成本、功耗、體積、可靠性等因素,衛(wèi)星/MEMS組合導(dǎo)航模塊采用嵌入式平臺開發(fā)方案[6],如圖1所示。系統(tǒng)由處理器、MEMS-IMU、GPS/BD多模導(dǎo)航接收機(jī)、磁強(qiáng)計等重要部件組成。

姿態(tài)與航向校準(zhǔn)算法

理想情況下,將陀螺感測的角速度信息融入姿態(tài)處理器,在獲悉載體初始姿態(tài)情況下,同時認(rèn)為陀螺的輸出比較精準(zhǔn),一般的解算足以獲得夠用的姿態(tài)信息。然而,通常初始姿態(tài)無法準(zhǔn)確獲得,陀螺和加速度計都遭受隨機(jī)漂移、失準(zhǔn)角誤差、加速度敏感誤差、標(biāo)度因數(shù)誤差及其非線性等因素的影響,磁強(qiáng)計存在磁感應(yīng)失真等。如圖2所示,通過工裝將模塊安裝于測試設(shè)備上,設(shè)計合理標(biāo)定流程和算法,便可獲得陀螺和加速度計常值零偏、標(biāo)度因數(shù)、失準(zhǔn)角誤差量等關(guān)鍵參數(shù)。

通常在組合模塊安裝好之后,對磁強(qiáng)計的誤差和干擾進(jìn)行校準(zhǔn)。姿態(tài)與航向解算中,陀螺的漂移引起的誤差最大,如果沒有濾波算法,解姿信息將不斷偏離真實(shí)數(shù)值。該卡爾曼濾波器提供在線陀螺漂移校準(zhǔn),加速度計提供重力軸系參考,磁強(qiáng)計通過與加速度計配合,提供航向參考。

姿態(tài)估計算法中,提供穩(wěn)定的三維歐拉角roll、pitch、yaw,為了提高精度并避免奇異,采用四元數(shù)法實(shí)時更新方向余弦矩陣。MEMS陀螺感測到載體角速度,通過差分方程實(shí)時更新姿態(tài)四元數(shù),同時獲得更新后的方向余弦矩陣,從而獲得姿態(tài)角的更新。

卡爾曼濾波器姿態(tài)校準(zhǔn)的實(shí)現(xiàn),之所以能夠改善性能,主要在于它能夠準(zhǔn)確估計出陀螺的漂移和姿態(tài)誤差。這種方式的優(yōu)點(diǎn)是:濾波器估計了絕對姿態(tài)誤差,因而無論是哪一部分誤差污染了姿態(tài)角,都可以直接用其來校準(zhǔn)姿態(tài)角輸出。姿態(tài)與航向校準(zhǔn)模塊,采用EKF,包含兩個部分:線性姿態(tài)誤差與陀螺漂移模型,非線性姿態(tài)四元數(shù)誤差模型。狀態(tài)模型基于陀螺輸出數(shù)據(jù),預(yù)測姿態(tài)誤差和陀螺漂移,量測模型采用真實(shí)世界的姿態(tài)誤差量測值校準(zhǔn)預(yù)測部分,該姿態(tài)誤差量測值由加速度計與磁強(qiáng)計獲得。這兩個參考數(shù)據(jù)源向卡爾曼濾波器提供適當(dāng)?shù)闹眯潘絒4]。

航姿模塊路測試驗(yàn)

為了能夠正確推算模塊的姿態(tài)、速度、位置等信息,準(zhǔn)確對準(zhǔn)初始姿態(tài)是十分必要的。由于低精度MEMS陀螺不能感測到地球自轉(zhuǎn)角速率,因此不能采用傳統(tǒng)的自對準(zhǔn)方法實(shí)現(xiàn)初始化對準(zhǔn)。基于系統(tǒng)方案,將磁強(qiáng)計與MEMS加速度計進(jìn)行組合,構(gòu)成測姿模塊,實(shí)現(xiàn)初始化對準(zhǔn)。如圖2所示,單片磁強(qiáng)計由三軸正交磁阻傳感器與數(shù)字化ASIC接口構(gòu)成,磁強(qiáng)計不能單獨(dú)確定航向角,需要MEMS-IMU模塊中的加速度計配合,輔助磁強(qiáng)計精確確定航向角[2]。

跑車實(shí)驗(yàn):沿著一小區(qū)跑車,該小區(qū)有高樓,有樹蔭,其具體的姿態(tài)角如下圖所示。

衛(wèi)星/MEMS組合濾波

導(dǎo)航解算

由于MEMS陀螺不同于傳統(tǒng)高精度陀螺,其不能感測地球相對于慣性空間的旋轉(zhuǎn)速率,因而無法使用傳統(tǒng)的導(dǎo)航解算公式去實(shí)時推算速度和位置。如圖4所示,為捷聯(lián)解算算法流程。

組合濾波算法

衛(wèi)星/MEMS組合導(dǎo)航模塊實(shí)現(xiàn)方案如圖5所示,MEMS-SINS模塊與衛(wèi)星導(dǎo)航模塊是彼此獨(dú)立的兩個部分,此框圖顯示了以MEMS-SINS和衛(wèi)星導(dǎo)航接收機(jī)的速度/位置信息做差作為量測量。松耦合組合導(dǎo)航通常有兩種形式:開環(huán)與閉環(huán),如圖5所示,該技術(shù)方案采用閉環(huán)形式,將卡爾曼濾波估計出的各種誤差反饋至MEMS-SINS模塊,改善系統(tǒng)性能[5]。[!--empirenews.page--]

組合導(dǎo)航路測試驗(yàn)

與傳統(tǒng)高精度捷聯(lián)慣性導(dǎo)航系統(tǒng)不同的是,MEMS-SINS模塊無法感測地球自轉(zhuǎn)角速率,地球的自轉(zhuǎn)角速率完全淹沒在MEMS陀螺的噪聲之中,當(dāng)載體處于靜止?fàn)顟B(tài)時,認(rèn)為陀螺輸出角速率為0。MEMS-SINS誤差方程修正如下所示:

姿態(tài)誤差方程為:
速度誤差方程為:
位置誤差方程為:

其中,為姿態(tài)誤差, 為速度誤差, 為位置誤差。為輸出角速度誤差矢量, 為所測得的比力誤差矢量。

卡爾曼濾波器系統(tǒng)狀態(tài)向量由15項(xiàng)構(gòu)成,其中, 為姿態(tài)誤差角;分別為載體的東向、北向和天向速度誤差;分別為緯度誤差、經(jīng)度誤差和高度誤差;分別為陀螺隨機(jī)常值漂移和加速度計隨機(jī)常值零偏。具體卡爾曼濾波算法功能通過軟件代碼實(shí)現(xiàn)。

通過軟件實(shí)現(xiàn)所設(shè)計的捷聯(lián)算法與組合濾波算法。重點(diǎn)研究了采用EKF組合算法之后的系統(tǒng)誤差狀態(tài)向量的估計情況。并通過matlab軟件對衛(wèi)星/MEMS組合中的各種誤差向量估計做仿真觀測。并在實(shí)際路測環(huán)境下,獲得導(dǎo)航全參數(shù)。如圖6所示為路測試驗(yàn)專用車。

如圖7所示,紅色為衛(wèi)星導(dǎo)航,藍(lán)色為組合導(dǎo)航,當(dāng)試驗(yàn)車路過城市峽谷時,由于遮擋和多路徑效應(yīng)等,衛(wèi)星導(dǎo)航出現(xiàn)較大偏差,而組合導(dǎo)航表現(xiàn)良好。

如圖8所示,當(dāng)路測試驗(yàn)車進(jìn)入地下車庫時,衛(wèi)星導(dǎo)航立刻中斷,而組合導(dǎo)航依然能夠維持導(dǎo)航能力。

當(dāng)衛(wèi)星導(dǎo)航信號中斷,組合導(dǎo)航模塊的定位、定速性能將逐漸惡化,而姿態(tài)角受影響較小。表1給出了組合濾波算法在不同的衛(wèi)星導(dǎo)航中斷間隔內(nèi)的實(shí)測結(jié)果。在靜態(tài)情況下,姿態(tài)角誤差小于0.2°,航向角誤差小于0.5°。在動態(tài)情況下,姿態(tài)角與航向角誤差小于1°,如果衛(wèi)星導(dǎo)航信號突然中斷,將能持續(xù)30秒,定位精度維持在20米內(nèi)。

硬件平臺

本文以GPS/BD多模導(dǎo)航接收機(jī)、MEMS-IMU、磁強(qiáng)計構(gòu)成的超低成本微小型組合導(dǎo)航模塊為研究對象,結(jié)合實(shí)際需求,設(shè)計組合導(dǎo)航架構(gòu);通過比較傳統(tǒng)SINS與現(xiàn)代MEMS-SINS,提出實(shí)用的MEMS-SINS的初始化方案和捷聯(lián)解算算法;基于MEMS-IMU,給出衛(wèi)星/MEMS組合導(dǎo)航模塊工程化的濾波算法,實(shí)現(xiàn)非線性連續(xù)系統(tǒng)的線性離散化。仿真與實(shí)測試驗(yàn)結(jié)果表明:在MEMS-IMU精度較低的情況下,通過相關(guān)算法的合理設(shè)計,仍可以實(shí)現(xiàn)較高精度導(dǎo)航。圖9展示了自主設(shè)計的衛(wèi)星/MEMS組合導(dǎo)航模塊和集成開發(fā)軟件平臺。

參考文獻(xiàn)

[1]G H Elkaim. Comparison of Low-Cost GPS/INS Sensors for Autonomous Vehicle Applications [J]. 2008, 1133: 1144.
[2]Michael J. Caruso Applications of Magnetic Sensors for Low Cost Compass Systems [R]. Honeywell Inc, 2000.
[3]David H Titterton, John L Weston. Strapdown Inertial Navigation Technology 2nd Edition [M]. The IEE, 2004.
[4]秦永元, 張洪鉞, 汪叔華. 卡爾曼濾波與組合導(dǎo)航原理[M]. 西安: 西北工業(yè)大學(xué)出版社, 1998.
[5]Di Li. Based Low-cost Inertial/GPS Integrated Navigation Platform: Design and Experiments [J]. Journal of GPS, 2007
[6]杜春雷. ARM體系結(jié)構(gòu)與編程[M]. 清華大學(xué)出版社,2003.[!--empirenews.page--]

本站聲明: 本文章由作者或相關(guān)機(jī)構(gòu)授權(quán)發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點(diǎn),本站亦不保證或承諾內(nèi)容真實(shí)性等。需要轉(zhuǎn)載請聯(lián)系該專欄作者,如若文章內(nèi)容侵犯您的權(quán)益,請及時聯(lián)系本站刪除。
換一批
延伸閱讀

9月2日消息,不造車的華為或?qū)⒋呱龈蟮莫?dú)角獸公司,隨著阿維塔和賽力斯的入局,華為引望愈發(fā)顯得引人矚目。

關(guān)鍵字: 阿維塔 塞力斯 華為

加利福尼亞州圣克拉拉縣2024年8月30日 /美通社/ -- 數(shù)字化轉(zhuǎn)型技術(shù)解決方案公司Trianz今天宣布,該公司與Amazon Web Services (AWS)簽訂了...

關(guān)鍵字: AWS AN BSP 數(shù)字化

倫敦2024年8月29日 /美通社/ -- 英國汽車技術(shù)公司SODA.Auto推出其旗艦產(chǎn)品SODA V,這是全球首款涵蓋汽車工程師從創(chuàng)意到認(rèn)證的所有需求的工具,可用于創(chuàng)建軟件定義汽車。 SODA V工具的開發(fā)耗時1.5...

關(guān)鍵字: 汽車 人工智能 智能驅(qū)動 BSP

北京2024年8月28日 /美通社/ -- 越來越多用戶希望企業(yè)業(yè)務(wù)能7×24不間斷運(yùn)行,同時企業(yè)卻面臨越來越多業(yè)務(wù)中斷的風(fēng)險,如企業(yè)系統(tǒng)復(fù)雜性的增加,頻繁的功能更新和發(fā)布等。如何確保業(yè)務(wù)連續(xù)性,提升韌性,成...

關(guān)鍵字: 亞馬遜 解密 控制平面 BSP

8月30日消息,據(jù)媒體報道,騰訊和網(wǎng)易近期正在縮減他們對日本游戲市場的投資。

關(guān)鍵字: 騰訊 編碼器 CPU

8月28日消息,今天上午,2024中國國際大數(shù)據(jù)產(chǎn)業(yè)博覽會開幕式在貴陽舉行,華為董事、質(zhì)量流程IT總裁陶景文發(fā)表了演講。

關(guān)鍵字: 華為 12nm EDA 半導(dǎo)體

8月28日消息,在2024中國國際大數(shù)據(jù)產(chǎn)業(yè)博覽會上,華為常務(wù)董事、華為云CEO張平安發(fā)表演講稱,數(shù)字世界的話語權(quán)最終是由生態(tài)的繁榮決定的。

關(guān)鍵字: 華為 12nm 手機(jī) 衛(wèi)星通信

要點(diǎn): 有效應(yīng)對環(huán)境變化,經(jīng)營業(yè)績穩(wěn)中有升 落實(shí)提質(zhì)增效舉措,毛利潤率延續(xù)升勢 戰(zhàn)略布局成效顯著,戰(zhàn)新業(yè)務(wù)引領(lǐng)增長 以科技創(chuàng)新為引領(lǐng),提升企業(yè)核心競爭力 堅(jiān)持高質(zhì)量發(fā)展策略,塑強(qiáng)核心競爭優(yōu)勢...

關(guān)鍵字: 通信 BSP 電信運(yùn)營商 數(shù)字經(jīng)濟(jì)

北京2024年8月27日 /美通社/ -- 8月21日,由中央廣播電視總臺與中國電影電視技術(shù)學(xué)會聯(lián)合牽頭組建的NVI技術(shù)創(chuàng)新聯(lián)盟在BIRTV2024超高清全產(chǎn)業(yè)鏈發(fā)展研討會上宣布正式成立。 活動現(xiàn)場 NVI技術(shù)創(chuàng)新聯(lián)...

關(guān)鍵字: VI 傳輸協(xié)議 音頻 BSP

北京2024年8月27日 /美通社/ -- 在8月23日舉辦的2024年長三角生態(tài)綠色一體化發(fā)展示范區(qū)聯(lián)合招商會上,軟通動力信息技術(shù)(集團(tuán))股份有限公司(以下簡稱"軟通動力")與長三角投資(上海)有限...

關(guān)鍵字: BSP 信息技術(shù)
關(guān)閉
關(guān)閉