這項技術(shù)比5G還要快十倍
研究人員已經(jīng)研發(fā)出一種太赫茲(THz)發(fā)射器,該發(fā)射器的數(shù)據(jù)傳輸速度要比5G至少快10倍,而該技術(shù)有望在2020年實現(xiàn)應(yīng)用。
為期五天的2017國際固態(tài)電路會議(ISSCC)將于2月5號到9號在加利福尼亞州的舊金山舉行,根據(jù)安排,太赫茲發(fā)射器將會在這次電路會議上被展示,這種傳送機能夠?qū)⒁粋€DVD上的全部內(nèi)容瞬間發(fā)送完畢。
(編者注:太赫茲頻率是一種新的巨大頻率資源,有望在未來應(yīng)用于超高速無線通信。)
Minoru Fujishima是日本廣島大學(xué)的教授,也是太赫茲研究者之一。他說:“太赫茲也能與衛(wèi)星進(jìn)行超高速連接,而與衛(wèi)星的連接,只能通過無線。這也有好處,比如,它極大地促進(jìn)了動態(tài)網(wǎng)絡(luò)連接的發(fā)展。其它可能的應(yīng)用包括快速將資源下載到移動設(shè)備,基站之間實現(xiàn)超快速無線連接。”
據(jù)了解,該研究小組研發(fā)的是一款頻率在290GHz到315GHz的發(fā)射器,能夠?qū)崿F(xiàn)105Gbps的通信速度。
雖然這個范圍的頻段現(xiàn)在還沒有被分配,但值得注意的是它處于275GHz到450GHz范圍內(nèi),該頻段將在國際電信聯(lián)盟無線電通信部門組織的2019世界無線電大會上進(jìn)行討論。
雷鋒網(wǎng)還了解到,去年該研發(fā)小組就曾向大家展示了通過使用正交調(diào)幅(QAM)大幅提高300GHz頻率的無線連接速度的研究成果。今年,他們展示的是更快的發(fā)射器,單個通道數(shù)據(jù)速率比之前快六倍。作為集成電路發(fā)射器,它首次實現(xiàn)單個通道速率超過100Gbps.
“今年我們新研發(fā)的發(fā)射器,傳送功率比之前的要高十倍。這使得300GHz的單個通道數(shù)據(jù)速率超過100Gbit/s成為可能。”Fujishima如此表示。
他還說道:“我們通常討論兆位每秒或吉比特每秒的無線數(shù)據(jù)傳輸速率,但是現(xiàn)在我們正接近利用簡單的單一通信通道實現(xiàn)太比特每秒的傳輸速率。”
接下來,廣島大學(xué)、日本國家信息與通信研究所以及松下電器的研究小組計劃進(jìn)一步研發(fā)300GHz的超高速無線電路。
太赫茲的歷史
早期太赫茲在不同的領(lǐng)域有不同的名稱,在光學(xué)領(lǐng)域被稱為遠(yuǎn)紅外,而在電子學(xué)領(lǐng)域,則稱其為亞毫米波、超微波等。在20世紀(jì)80年代中期之前,太赫茲波段兩側(cè)的紅外和微波技術(shù)發(fā)展相對比較成熟,但是人們對太赫茲波段的認(rèn)識仍然非常有限,形成了所謂的“THz Gap”。
2004年,美國政府將THz科技評為“改變未來世界的十大技術(shù)”之一,而日本于2005年1月8日更是將THz技術(shù)列為“國家支柱十大重點戰(zhàn)略目標(biāo)”之首,舉全國之力進(jìn)行研發(fā)。
我國政府在2005年11月專門召開了“香山科技會議”,邀請國內(nèi)多位在THz研究領(lǐng)域有影響的院士專門討論我國THz事業(yè)的發(fā)展方向,并制定了我國THz技術(shù)的發(fā)展規(guī)劃。目前國內(nèi)已經(jīng)有多家研究機構(gòu)開展太赫茲領(lǐng)域的相關(guān)研究,其中首都師范大學(xué),是入手較早,投入較大的一家,并且在毒品和炸藥太赫茲光譜、成像和識別方面,利用太赫茲對非極性航天材料內(nèi)部缺陷進(jìn)行無損檢測方面做出了許多開拓性的工作,同時由于太赫茲射線在安全檢查方面的獨特優(yōu)勢,首都師范大學(xué)太赫茲實驗室正集中力量研發(fā)能夠用于實景測試的安檢原型設(shè)備。另外,美國、歐洲、亞洲、澳大利亞等許多國家和地區(qū)政府、機構(gòu)、企業(yè)、大學(xué)和研究機構(gòu)紛紛投入到THz的研發(fā)熱潮之中。THz研究領(lǐng)域的開拓者之一,美國著名學(xué)者張希成博士稱:“Next ray,T-Ray !
特點
人們關(guān)注THz技術(shù)的原因是THz射線普遍存在,是人們認(rèn)識自然界的有效線索和工具。但是相對于其他波段的電磁波比如紅外和微波,對它的認(rèn)識和應(yīng)用非常匱乏。其次,THz射線有它自身的特點。
THz 脈沖的典型脈寬在皮秒量級,不但可以方便地進(jìn)行時間分辨的研究,而且通過取樣測量技術(shù),能夠有效地抑制遠(yuǎn)紅外背景噪聲的干擾。目前,脈沖THz 輻射通常只有較低的THz 射線平均功率,但是由于THz 脈沖有很高的峰值功率,并且采用相干探測技術(shù)獲得的是THz 脈沖的實時功率而不是平均功率,因此有很高的信噪比。目前,在時域光譜系統(tǒng)中的信噪比可達(dá)10^5或更高。
THz 脈沖源通常只包含若干個周期的電磁振蕩,單個脈沖的頻帶可以覆蓋從GHz 直至幾十THz 的范圍,許多生物大分子的振動和轉(zhuǎn)動能級,電介質(zhì)、半導(dǎo)體材料、超導(dǎo)材料、薄膜材料等的聲子振動能級落在THz 波段范圍。因此THz 時域光譜技術(shù)作為探測材料在THz 波段信息的一種有效的手段,非常適合于測量材料吸收光譜,可用于進(jìn)行定性鑒別的工作。
THz 光子的能量低,頻率為1THz的光子能量只有約4毫電子伏特,因此不容易破壞被檢測物質(zhì)。
許多的非金屬非極性材料對THz 射線的吸收較小,因此結(jié)合相應(yīng)的技術(shù),使得探測材料內(nèi)部信息成為可能。例如,陶瓷,硬紙板,塑料制品,泡沫等對THz 電磁輻射是透明的,因此THz 技術(shù)可以作為x射線的非電離和相干的互補輻射源,用于機場、車站等地方的安全監(jiān)測,比如探查隱藏的走私物品包括槍械、爆炸物、和毒品等,以及用于集成電路焊接情況的檢測等。極性物質(zhì)對THz 電磁輻射的吸收比較強,特別是水,THz 光譜技術(shù)中應(yīng)采取各種措施避免水分的影響,不過在THz 成像技術(shù)中,可以利用這一特性分辨生物組織的不同狀態(tài),比如動物組織中脂肪和肌肉的分布,診斷人體燒傷部位的損傷程度,及植物葉片組織的水分含量分布等。太赫茲成像技術(shù)與其他波段的成像技術(shù)相比,它所得到的探測圖像的分辨率和景深都有明顯的增加(超聲、紅外、X-射線技術(shù)也能提高圖像分辨率,但是毫米波技術(shù)卻沒有明顯的提高)。另外太赫茲技術(shù)還有許多獨特的特性,如在非均勻的物質(zhì)中有較少的散射,能夠探測和測量水汽含量等等。
太赫茲光譜技術(shù)不僅信噪比高,能夠迅速地對樣品組成的細(xì)微變化作出分析和鑒別,而且太赫茲光譜技術(shù)是一種非接觸測量技術(shù),使它能夠?qū)Π雽?dǎo)體、電介質(zhì)薄膜及體材料的物理信息進(jìn)行快速準(zhǔn)確的測量。鑒于THz射線的特點,必將給通信、雷達(dá)、天文、醫(yī)學(xué)成像、生物化學(xué)物品鑒定、材料學(xué)、安全檢查等領(lǐng)域帶來深遠(yuǎn)的影響,進(jìn)而改變?nèi)藗兊纳a(chǎn)生活。