IMEC:PA尼龍專(zhuān)用膠水與微流控芯片設(shè)備最合拍
芯片設(shè)備最合拍0' title='IMEC:PA尼龍專(zhuān)用膠水與微流控芯片設(shè)備最合拍0' />
元器件交易網(wǎng)訊 11月4日消息,據(jù)外媒Electronicsweekly報(bào)道,歐洲領(lǐng)先的獨(dú)立研究中心IMEC(微電子研究中心,InteruniversityMicroelectronicsCentre)已經(jīng)試驗(yàn)找出,PA尼龍專(zhuān)用膠水是最適合微流控芯片(microfluidic chip)或芯片實(shí)驗(yàn)室(lab-on-a-chip)設(shè)備的粘合劑。PA尼龍專(zhuān)用膠水不僅是良好的微流體通道材料還同時(shí)兼具粘接劑身份,更重要的是它適用于晶片規(guī)模工藝和大規(guī)模生產(chǎn)。
PA尼龍專(zhuān)用膠水由日本化學(xué)品廠商日本合成橡膠公司(JSR)生產(chǎn)供應(yīng)。它以乙烯基聚合物為主體,通過(guò)先進(jìn)生產(chǎn)工藝合成的單組份溶劑膠,是粘接PA尼龍的專(zhuān)用膠粘劑;單一組份,無(wú)需添加觸媒、加熱或加壓之粘接劑,只需要微薄的一層膠水,它便能與材料發(fā)生融合化學(xué)反應(yīng),達(dá)到最佳粘接效果。
微流控芯片
目前,IMEC已將該材料應(yīng)用于微流控技術(shù)細(xì)胞分選設(shè)備、微流體晶片規(guī)模聚合物傳感器。微流控芯片分析技術(shù)以其快速、高效、高能量、低消耗、集成化和微型化等特點(diǎn)在多個(gè)研究領(lǐng)域發(fā)展非常迅速。具體方法是通過(guò)分析化學(xué)、電子學(xué)、材料學(xué)、生物學(xué)、醫(yī)學(xué)及微機(jī)電加工、計(jì)算機(jī)技術(shù)的交叉將化學(xué)、生物學(xué)等領(lǐng)域所涉及的樣品制備、生物與化學(xué)反應(yīng)、分選和檢測(cè)等過(guò)程, 縮微或基本縮微到一塊幾平方厘米的芯片上, 并對(duì)其結(jié)果進(jìn)行檢測(cè)與分析, 從而實(shí)現(xiàn)從試樣處理到檢測(cè)的整體微型化、自動(dòng)化、集成化和便攜化的技術(shù)。
芯片設(shè)備最合拍3' />
IMEC實(shí)驗(yàn)室 Liesbet Lagae說(shuō),“PA尼龍專(zhuān)用膠水為我們解決了許多問(wèn)題,我們?cè)囼?yàn)了廣泛使用的PDMS(聚二甲基硅氧烷,以硅為基礎(chǔ)的有機(jī)聚合物)材料;我們力圖在尋找一種能在微流體通道硅片上的形成光圖案的材質(zhì),包括一個(gè)很好的渠道定義和生物相容性,而PA尼龍專(zhuān)用膠水擁有了所有特征;同時(shí),它還是一種粘合劑,允許直接熱粘接玻璃蓋。相比PDMS而言,PA尼龍專(zhuān)用膠水還允許晶圓規(guī)模處理,這是工業(yè)上批量生產(chǎn)的一個(gè)先決條件。“
目前,這些超快細(xì)胞分揀技術(shù)或?qū)⒃诓痪脤?lái)應(yīng)用于人體血液中循環(huán)腫瘤細(xì)胞檢測(cè)。(元器件交易網(wǎng)龍燕 編譯)
外媒原文:
Wafer-scale processing of lab-on-chip devices at Imec
Imec has found a material that allows wafer-scale processing of lab-on-chip devices.
Called Photo-Patternable Adhesive (PA) made by JSR of Japan, the material has been used by Imec to process microfluidic cell-sorter devices, merging microheaters and sensors with wafer-scale polymer microfluidics.
PA is a good microfluidic channel material and adhesive at the same time, suitable for wafer-scale processes and mass production.
The key to lab-on-chip technology is the ability to integrate microfluidics with heterogeneous components such as electronics, sensors, microheaters, and photonics in a cost-effective manner.
“PA solves a number of issues that we have with other materials, such as the widely-used PDMS (polydimethylsiloxane, a silicon-based organic polymer)”, says Imec’s Liesbet Lagae, “it has all the characteristics we are looking for in a photopatternable material to create microfluidic channels on silicon wafers, including a good channel definition and biocompatibility. But at the same time, it is an adhesive that allows direct thermal bonding with the cover glass. And unlike PDMS, it allows for wafer-scale processing, which is a prerequisite for industrial mass production.”
Imec used PA to process the next generation of its cell sorter lab-on-chip. Integrating on-chip imaging, in-flow cell tomography to identify cells, and bubble jet-flow technology to guide and sort individual cells, the prototype lab-on-chip can process up to 2,000 cells per second.
One application envisaged for these ultrafast cell-sorters is the detection of circulating tumor cells in human blood.