參量換能器原理和收發(fā)電路設(shè)計
1 引 言
聲參量陣(Parametric Array)是利用媒質(zhì)的非線性效應,使用換能器(陣)沿同一方向傳播兩個高頻初始波,獲得差頻、和頻等聲波的聲發(fā)射裝置。由于聲吸收系數(shù)與頻率的平方成正比,在聲波的傳播過程中,頻率較高的超聲波和頻信號衰減很快,經(jīng)過一段距離后,僅剩下頻率較低的差頻信號。與常規(guī)聲納相比,該差頻信號具有如下特點:首先,差頻波幾乎沒有旁瓣,避免了在淺海沉底或沉積物探測過程中由于邊界不均勻性所帶來的干擾和信號處理的復雜性。其次,與常規(guī)換能器相比較,差頻波具有更好的指向性。例如,工作頻率為2 kHz的線陣,要得到3°的波束寬度,線陣的長度大約為25 m,而得到同樣波束寬度的參量陣換能器發(fā)射孔徑僅需36 cm×36 cm(主頻為100 kHz),這就有利于開發(fā)窄波束聲源用于探測淺水域尺寸遠遠小于水柱深度的物體。第三,差頻聲波具有大于10 kHz的帶寬,故可以采用先進的擴頻檢測算法。
目前,參量陣技術(shù)的研究與應用開發(fā)以成為聲學技術(shù)領(lǐng)域的前沿課題之一。例如,以美國ATC公司為代表的一些企業(yè),正在研發(fā)各種系列參量揚聲器,實現(xiàn)了聲音的定向傳播。德國的INNOMAR公司利用羅斯托克大學水下聲學研究小組的研究成果,生產(chǎn)出了SES-96和SES-2000系列的參量陣測深/淺地層剖面儀,是目前廣泛應用的一種強有力的淺海水下探測儀器。在國內(nèi),中國科學院東海研究站早在1995年就為澳大利亞DSTO研制了一套單波束參量陣探雷儀器,1997年又研制了用于江河偵察的530參量陣聲納,近期又研制成功了參量陣“堤防隱患監(jiān)測聲吶”,可以對江河湖底和海底沉積層進行探測識別或?qū)Φ谭罁p毀程度進行探測評估。國內(nèi)的一些大學和聲學研究機構(gòu)也開展了利用空氣參量陣來實現(xiàn)聲波定向傳播的應用研究,并取得了階段性成果。
2 參量換能器的原理
2.1 參量陣的工作原理
聲參量陣是利用介質(zhì)的非線性特性,使用2個沿同一方向傳播的高頻初始波在遠場中獲得的差頻及和頻波的聲發(fā)射裝置。參量陣聲納在高壓下同時向媒介發(fā)射2個頻率相近的高頻聲波信號(f1,f2)作為主頻,聲波在介質(zhì)中傳播時由于介質(zhì)的非線性效應而形成差頻波,改變2個主頻頻率就可以控制差頻波的頻率,當換能器發(fā)射聲波作用于媒介體時,在換能器的發(fā)射方向會產(chǎn)生一系二次頻率,如f1,f2,(f1+f2),(f11-f2),2f1,2f2的聲波信號,因f1、f2的頻率非常接近,所以差頻(f1-f2)的頻率很低,具有很強的沉積層穿透力,可以用來探測海底淺部地層結(jié)構(gòu),而反射的主頻聲波信號則用于精確的水深測量。由于主頻的頻率高,換能器可以制作得很小。產(chǎn)生的差頻聲波信號強度比主頻聲波強度稍高,衰減較慢,傳播達到1個衍射單位長度時,聲強最大,然后逐漸衰減。差頻聲波信號與高頻時的波束角非常接近,且沒有旁瓣,因此波束指向性好,具有較高的分辨率,可控的差頻聲波信號可以承載更多的沉積層信息,以便于對埋入沉積層的目標進行分類識別。
與常規(guī)的換能器相比,參量換能器除了具有上述優(yōu)點之外,也有比較明顯的缺點:
(1)為了實現(xiàn)非線性聲學效應,要求原波的聲源級(SL)較高,當原波平均頻率為40 kHz時,通常要求原波的聲援級為238 dB。應當指出,如果換能器的發(fā)射功率太大,在水下應用時有可能出現(xiàn)空化現(xiàn)象。
(2)參量換能器的能量轉(zhuǎn)換效率較低,一般很難超過1%。
2.2 參量換能器的系統(tǒng)設(shè)計
(1)換能器設(shè)計
換能器結(jié)構(gòu)的正確選擇,對于本參量換能器實驗驗證系統(tǒng)的設(shè)計是至關(guān)重要的。根據(jù)參量陣的發(fā)射原理,我們選擇圓形壓電陶瓷換能器來發(fā)射原波信號,并利用傳聲器進行回波接收。如圖1所示。壓電陶瓷換能器是當前水聲領(lǐng)域中廣泛使用的一類換能器,它具有電聲轉(zhuǎn)換效率高、靈敏度好、容易成形等特點。文獻[4]中指出,如果原波頻率太高,就會使頻率下降比(即原波頻率與差頻波頻率之比)增加,從而降低能量轉(zhuǎn)換效率;反之,如果原波頻率太低,則需要較大的換能器發(fā)射孔徑,才能獲得較好的聲波指向性。因此,在參量換能器的設(shè)計應折衷考慮上述兩個因素。在本實驗中,選擇了諧振頻率為87 kHz,帶寬為14 kHz的換能器。該換能器的尺寸規(guī)格為φ25 mm×1 mm。為了接收差頻聲波,選擇頻率范圍為20~20 000 Hz的全指向性駐極體電容傳聲器作為回波信號接收器,其尺寸規(guī)格為φ9.7 mm×6.7 mm。
(2)參量換能器系統(tǒng)設(shè)計[!--empirenews.page--]
參量換能器系統(tǒng)主要由PC機、超聲波發(fā)射電路、聲波接收電路、發(fā)射換能器、傳聲器和數(shù)據(jù)采集卡組成。本文擬建立如圖2所示的參量換能器實驗驗證系統(tǒng)。其中超聲換能器和傳聲器是用來實現(xiàn)超聲波信號發(fā)射和聲波信號接收的裝置;超聲波發(fā)射電路是用來產(chǎn)生一定頻率的載波和調(diào)制信號,通過調(diào)制、放大后驅(qū)動換能器發(fā)射出超聲波信號;聲波接收電路是用來對回波信號進行放大、濾波等調(diào)理,以便送人數(shù)據(jù)采集卡,然后由計算機進行數(shù)據(jù)處理。
3 發(fā)射電路的設(shè)計
參量換能器的超聲波發(fā)射電路,主要包括信號產(chǎn)生電路和功率放大電路。信號產(chǎn)生電路主要是用來產(chǎn)生超聲波信號,功率放大電路主要是用來提高電路的發(fā)射功率從而驅(qū)動換能器發(fā)射出超聲波信號。
3.1 信號產(chǎn)生電路
參量換能器采用正弦信號作為載波信號;調(diào)制信號可采用Ricker信號(由PC機產(chǎn)生)。正弦信號擬用LM741設(shè)計了一種RC橋式正弦波振蕩電路,如圖3所示。該電路采用電壓串聯(lián)負反饋,具有輸入阻抗高、輸出阻抗低的特點。圖中,D1,D2為二極管元件,其作用是限制輸出電壓的擺幅不斷增大,避免輸出波形失真。
放大電路由電阻R1和R2,R3以及Rd的等效電阻Rf構(gòu)成的負反饋組成,其中Rd為二極管的內(nèi)阻。放大電路的放大倍數(shù)為:
選頻網(wǎng)絡(luò)由RC組成的串并聯(lián)電路組成,其特征頻率為:
根據(jù)試驗需要,可以調(diào)整R,C的值,得到需要的振蕩頻率。
該選頻網(wǎng)絡(luò)的頻率特性為:
根據(jù)以上各關(guān)系式以及電路的起振條件,可以確定放大電路反饋回路中R1和R2,R3的比值。
3.2 功率放大電路設(shè)計
功率放大電路采用PA141作為放大器,構(gòu)成類似橋式的驅(qū)動電路,來驅(qū)動壓電陶瓷換能器。具體電路如圖4所示。
PAl41是“APEX”公司推出的8腳高壓單片集成的MOSFET運算放大器,它具有工作電壓高(350 V)、靜態(tài)電流小、輸出電流大(峰值120 mA)等優(yōu)點。PAl41內(nèi)部的輸入保護電路避免了過高的共模、差模電壓及靜電泄放的影響,其安全工作區(qū)無二次擊穿限制,因此只要選擇合適的限流電阻就可驅(qū)動不同的負載,并可通過PAl41的外部可調(diào)補償電路來選擇合適的帶寬和增益。使用該放大器不僅簡化了電路設(shè)計,而且可提高系統(tǒng)的可靠性。
在圖4中,運放A1,A2構(gòu)成雙重補給的橋式電路,其中A1的增益為20 dB,A2的輸出與A1反相,從而構(gòu)成差動式放大電路。若輸入正弦信號的電壓幅值為15 V,則施加在換能器兩端的驅(qū)動電壓的變化范圍為±300 V。由于PAl41的輸出電流較低,為了得到較高的輸出功率,電路中接人兩個功率MOS管,以提升輸出電流,從而得到較高的輸出功率來驅(qū)動換能器。
4 接收電路的設(shè)計
參量換能器的回波接收電路由前置放大電路、帶通濾波電路和末級放大電路組成,如圖5所示。
4.1 前置放大電路
前置放大電路采用具有低功耗、寬頻帶、高精度和高可靠性等優(yōu)點的AD620儀用放大器,它是一種電阻可編程的放大器,其內(nèi)部是由三運放組成的儀表放大器結(jié)構(gòu),內(nèi)部的電阻經(jīng)激光技術(shù)校準,整個放大器具有很高的精度和共模抑制比。AD620的增益是由電阻RG決定的,使用1%的精密電阻,它就能提供精確的增益G。該放大器只需要改變一個管腳1,8之間的電阻值,就可以在1~1 000之間調(diào)整增益,其增益公式為:
可根據(jù)實驗需要,選擇合適的RG來確定電路的增益。[!--empirenews.page--]
4.2 帶通濾波放大電路
帶通濾波器是用高阻抗運算放大器(TL082)和RC阻容元件構(gòu)成的放大器和有源帶通濾波器。
二階有源帶通濾波器的傳遞函數(shù)為:
式中,ω0為帶通濾波器的中心角頻率,ω0=2πf0,(f0=8 kHz);Q為品質(zhì)因素;A為濾波器的增益。若BW為帶寬,則有Q=f0/BW,濾波器的參數(shù)滿足如下關(guān)系:
當所需帶寬為BW=4 kHz,增益A=5,C1=C2時,則將已知數(shù)值代入上式,計算得:若C1=C2=681 pF,則R1=11.7 kΩ,R2=19.5 kΩ,Rf=117 kΩ。
末級放大電路是由普通的反向運算放大器和電阻元件構(gòu)成。通過調(diào)節(jié)電位器來改變放大器的增益,使接收電路的輸出幅值滿足數(shù)據(jù)采集電路板NI6024的輸入要求。
5 供電電源設(shè)計
在設(shè)計的參量陣收發(fā)電路中需要土175 V,±15 V,±5 V等電源。對于高壓電源的設(shè)計,實驗中采用推挽式穩(wěn)壓電源功率轉(zhuǎn)換電路,具體電路如圖6所示。
高壓電源設(shè)計中,由NE555組成的電路提供脈沖信號,SN75372集成芯片是雙通道與非門TTL/MOS專用接口電路,其中管腳2是兩個與非門公用的使能輸入端(高電平有效),管腳1/7和管腳3/6分別是兩個與非門的輸入/輸出端;管腳4是數(shù)字地;管腳8接5 V直流電源,管腳5接15 V直流電源。利用該接口電路,就可以直接用TTL電平來驅(qū)動MOSFET功率管。R4與R5構(gòu)成分壓電路,用來確定MOSFET功率管IRF520的柵源電壓VGS,進而控制功率管導通時的漏極電流ID;RS是限流電阻,用于限制漏級電流ID的大小,它可以使功率管導通時的最大漏級電流IM基本恒定,避免功率管導通瞬間過大的電流沖擊。該電路通過變壓器輸出后,將橋式整流電路變壓器副邊中點接地,再接上濾波電容,并且兩個電容的中點接地,可以得到較高的正、負直流輸出電壓,滿足實驗中高壓電源的需求。
另外,對于±15 V和±5 V電源,可以利用已有的24 V穩(wěn)壓電源,通過三端穩(wěn)壓集成電路模塊78和79系列得到所需要的直流電壓。
6 結(jié) 語
以上介紹了參量換能器的工作原理和收發(fā)電路的設(shè)計。對于實現(xiàn)參量陣差頻信號的發(fā)射與接收,實際工作中還有兩個需要注意的問題:
(1)實現(xiàn)聲學參量陣,要求原波信號有較高的聲源級,尤其在空氣中由于非線性效應較弱,對聲源級的要求也更高,這也增大發(fā)射器的功率。
(2)參量換能器的轉(zhuǎn)換效率較低,一般很難超過1%。如何提高參量換能器的效率,仍是一個值得探索的研究課題。
下一步工作是在實驗室中實現(xiàn)參量陣超聲波的發(fā)射和聲波的接收,并且在空氣中和水下驗證參量陣的性能指標,其中還要注意換能器在空氣和水下的阻抗率匹配問題。