0 引言
遷移率是衡量半導體導電性能的重要參數(shù),它決定半導體材料的電導率,影響器件的工作速度。已有很多文章對載流子遷移率的重要性進行研究,但對其測量方法卻少有提到。本文對載流子測量方法進行了小結。
1 遷移率μ的相關概念
在半導體材料中,由某種原因產(chǎn)生的載流子處于無規(guī)則的熱運動,當外加電壓時,導體內(nèi)部的載流子受到電場力作用,做定向運動形成電流,即漂移電流,定向運動的速度成為漂移速度,方向由載流子類型決定。在電場下,載流子的平均漂移速度v與電場強度E成正比為:
式中μ為載流子的漂移遷移率,簡稱遷移率,表示單位電場下載流子的平均漂移速度,單位是m2/V·s或cm2/V·s。
遷移率是反映半導體中載流子導電能力的重要參數(shù),同樣的摻雜濃度,載流子的遷移率越大,半導體材料的導電率越高。遷移率的大小不僅關系著導電能力的強弱,而且還直接決定著載流子運動的快慢。它對半導體器件的工作速度有直接的影響。
在恒定電場的作用下,載流子的平均漂移速度只能取一定的數(shù)值,這意味著半導體中的載流子并不是不受任何阻力,不斷被加速的。事實上,載流子在其熱運動的過程中,不斷地與晶格、雜質、缺陷等發(fā)生碰撞,無規(guī)則的改變其運動方向,即發(fā)生了散射。無機晶體不是理想晶體,而有機半導體本質上既是非晶態(tài),所以存在著晶格散射、電離雜質散射等,因此載流子遷移率只能有一定的數(shù)值。[!--empirenews.page--]
2 測量方法
(1)渡越時間(TOP)法
渡越時間(TOP)法適用于具有較好的光生載流子功能的材料的載流子遷移率的測量,可以測量有機材料的低遷移率。
在樣品上加適當直流電壓,選側適當脈沖寬度的脈沖光,通過透明電極激勵樣品產(chǎn)生薄層的電子一空穴對??昭ū焕截撾姌O方向,作薄層運動。設薄層狀況不變,則運動速度為μE。如假定樣品中只有有限的陷阱,且陷阱密度均勻,則電量損失與載流子壽命τ有關,此時下電極上將因載流子運動形成感應電流,且隨時間增加。在t時刻有:
若式中L為樣品厚度電場足夠強,t≤τ,且渡越時間t0<τ。則
在t0時刻,電壓將產(chǎn)生明顯變化,由實驗可測得,又有
式中L、V和t0皆為實驗可測量的物理量,因此μ值可求。
(2)霍爾效應法
霍爾效應法主要適用于較大的無機半導體載流子遷移率的測量。
將一塊通有電流I的半導體薄片置于磁感應強度為B的磁場中,則在垂直于電流和磁場的薄片兩端產(chǎn)生一個正比于電流和磁感應強度的電勢U,這稱為霍爾效應。由于空穴、電子電荷符號相反,霍爾效應可直接區(qū)分載流子的導電類型,測量到的電場可以表示為
式中R為霍爾系數(shù),由霍爾效應可以計算得出電流密度、電場垂直漂移速度分量等,以求的R,進而確定μ。
(3)電壓衰減法
通過監(jiān)控電暈充電試樣的表面電壓衰減來測量載流子的遷移率。充電試樣存積的電荷從頂面向接地的底電極泄漏,最初向下流動的電荷具有良好的前沿,可以確定通過厚度為L的樣品的時間,進而可確定材料的μ值。
(4)輻射誘發(fā)導電率(SIC)法
輻射誘發(fā)導電率(SIC)法適合于導電機理為空間電荷限制導電性材料。
在此方法中,研究樣品上面一半經(jīng)受連續(xù)的電子束激發(fā)輻照,產(chǎn)生穩(wěn)態(tài)SIC,下面一半材料起著注入接觸作用。然后再把此空間電荷限制電流(SCLC)流向下方電極。根據(jù)理論分析SCLC電導電流與遷移率的關系為
J=pμε1ε0V2/εDd3 (7)
測量電子束電流、輻照能量和施加電壓函數(shù)的信號電流,即可推算出μ值。[!--empirenews.page--]
(5)表面波傳輸法
將被測量的半導體薄膜放在有壓電晶體產(chǎn)生的場表面波場范圍內(nèi),則與場表面波相聯(lián)系的電場耦合到半導體薄膜中并且驅動載流子沿著聲表面波傳輸方向移動,設置在樣品上兩個分開的電極檢測到聲一電流或電壓,表達式為
Iae=μP/Lv. (8)
式中P為聲功率,L為待測樣品兩極間距離,v為表面聲波速。有此式便可推出μ值。
(6)外加電場極性反轉法
在極性完全封閉時加外電場,離子將在電極附近聚集呈薄板狀,引起空間電荷效應。當將外電場極性反轉時,載流子將以板狀向另一電極遷移。由于加在載流子薄層前、后沿的電場影響,因而在極性反轉后t時間時,電流達到最大值。t相當于載流子薄層在樣品中行走的時間,結合樣品的厚度、電場等情況,即可確定μ值。
(7)電流一電壓特性法
本方法主要適用于工作于常溫下的MOSFET反型層載流子遷移率的測量。
對于一般的MOSFET工作于高溫時,漏源電流Ids等于溝道電流Ich與泄漏電流Ir兩者之和,但當其工作于常溫時,泄漏電流Ir急劇減小,近似為零,使得漏源電流Ids即為溝道電流Ich。因此,對于一般的MOSFET反型層載流子遷移率,可以根據(jù)測量線性區(qū)I—V特性求的。
3 總結
綜上所述,本文共指出了七中載流子遷移率的測量方法,除此之外,還可采用漂移實驗、分析離子擴散、分析熱釋電流極化電荷瞬態(tài)響應等方法進行載流子遷移率的測量。