矩陣式變換器雙向開(kāi)關(guān)四步換流技術(shù)研究
摘要:對(duì)矩陣式變換器(MC)中雙向開(kāi)關(guān)的安全換流課題進(jìn)行了研究。分析了各種換流方案,進(jìn)而提出采用可編程邏輯元件(GAL)的四步換流方案,仿真和實(shí)驗(yàn)的結(jié)果證實(shí)了這種換流方案的可行性與可靠性。
關(guān)鍵詞:矩陣式變換器;雙向開(kāi)關(guān);可編程邏輯器件;四步換流
0 引言
1979年,意大利學(xué)者M(jìn).Venturini第一次提出了矩陣式變換器存在理論及控制策略。與傳統(tǒng)的交—交變頻器及交—直—交變頻器相比,矩陣式變頻器具有明顯的優(yōu)點(diǎn):高功率因數(shù)、低諧波污染、可四象限運(yùn)行、無(wú)中間儲(chǔ)能環(huán)節(jié)、體積小且效率高。隨著交流變頻調(diào)速技術(shù)成為當(dāng)代電氣傳動(dòng)中實(shí)現(xiàn)自動(dòng)化和節(jié)能的主要技術(shù)手段,矩陣式變換器(MC)的研究已成為電力電子技術(shù)研究的熱點(diǎn)之一。
1 矩陣式變換器及雙向開(kāi)關(guān)
圖1是矩陣式變換器的原理性結(jié)構(gòu),它可用一個(gè)虛擬的整流器和虛擬的逆變器構(gòu)成。采用這樣的結(jié)構(gòu)可以充分利用交—直—交變換器中成熟的PWM技術(shù)。
圖1 矩陣式變換器的原理性結(jié)構(gòu)圖
三相矩陣式變換器采用9個(gè)雙向開(kāi)關(guān)組成3×3的矩陣式結(jié)構(gòu),因而三相輸入中的任意一相可與三相輸出的任意一線相連,采用一定的開(kāi)關(guān)控制策略可使輸出線間平均輸出電壓為所需頻率下的正弦調(diào)制電壓,同時(shí)可使輸入電流正弦并與輸入電壓同相。調(diào)制過(guò)程中,組成雙向開(kāi)關(guān)的單向器件間的換流是矩陣式變換器實(shí)現(xiàn)中的關(guān)鍵。
目前常用的IGBT組合雙向開(kāi)關(guān)主要有3種形式,即由單個(gè)IGBT和二極管組合成的橋式雙向開(kāi)關(guān),共發(fā)射極反向串聯(lián)IGBT組合的雙向開(kāi)關(guān)和共集電極反向串聯(lián)IGBT組合的雙向開(kāi)關(guān),如圖2所示。
(a)橋式組合雙向開(kāi)關(guān)結(jié)構(gòu)
(b)共發(fā)射極反向串聯(lián)IGBT
(c)共集電極反向串聯(lián)IGBT
圖2 雙向開(kāi)關(guān)構(gòu)成方案
橋式組合雙向開(kāi)關(guān)任意時(shí)刻都有三個(gè)器件參與導(dǎo)通,導(dǎo)通壓降較大,損耗較高。共發(fā)射極和共集電極反向串聯(lián)IGBT組合雙向開(kāi)關(guān)使用兩個(gè)IGBT,利用器件內(nèi)部的續(xù)流二極管以阻擋反向電壓,結(jié)構(gòu)緊湊,方便簡(jiǎn)單,開(kāi)關(guān)損耗也較低,故獲得了廣泛的應(yīng)用。
2 三種換流方案的比較
2.1 死區(qū)換流方案
安排死區(qū)以避免換流時(shí)刻輸入線間短路,缺點(diǎn)是在有緩沖電路和電感性負(fù)載時(shí)開(kāi)關(guān)為硬開(kāi)關(guān)運(yùn)行方式,緩沖能量被釋放時(shí)會(huì)伴隨能量損耗。
2.2 重疊換流方案
重疊換流是以輸入線間短暫的短路過(guò)程來(lái)實(shí)現(xiàn)電流的切換,缺點(diǎn)是限流電感體積大、成本高,同時(shí)又有可能引入新的過(guò)電壓。
2.3 四步換流方案
為保證MC的輸入電流和輸出電壓都是正弦波,對(duì)9組雙向開(kāi)關(guān)都實(shí)行PWM控制,各開(kāi)關(guān)須按一定規(guī)律進(jìn)行切換。為了保證安全切換,同一相輸出的任意兩組開(kāi)關(guān)不能同時(shí)導(dǎo)通,否則將造成輸入兩相短路;三相開(kāi)關(guān)也不能同時(shí)斷開(kāi),即在兩組開(kāi)關(guān)切換期間不能插入死區(qū),否則就造成感性負(fù)載開(kāi)路而感應(yīng)高電壓。這樣,既不能兩組開(kāi)關(guān)交疊導(dǎo)通,又不允許有切換死區(qū),必須有嚴(yán)格的邏輯控制才行,四步換流方案能很好地滿足這個(gè)要求。
3 四步換流過(guò)程
圖3是接到同一相負(fù)載的兩組雙向開(kāi)關(guān)的換流示意圖。u1及u2表示兩相輸入電壓瞬時(shí)值,S1和S2表示兩組雙向開(kāi)關(guān),p和n表示每組開(kāi)關(guān)的正向和反向,uL和iL分別是負(fù)載上的輸出電壓和電流。
圖3 同一相負(fù)載兩組開(kāi)關(guān)的換流示意圖
四步換流要實(shí)現(xiàn)對(duì)兩個(gè)雙向開(kāi)關(guān)的換流控制,必須既要禁止可能使電源發(fā)生短路的開(kāi)關(guān)組合,又要保證在任意時(shí)刻給負(fù)載提供至少一條流通路徑,那么,滿足這些條件的開(kāi)關(guān)組合共有8組,列于表1。
表1 安全換流的開(kāi)關(guān)組合方案
S1p | S1n | S2p | S2n | iL方向 | |
---|---|---|---|---|---|
1 | 1 | 1 | 0 | 0 | +- |
2 | 0 | 0 | 1 | 1 | +- |
3 | 1 | 0 | 0 | 0 | + |
4 | 0 | 1 | 0 | 0 | - |
5 | 0 | 0 | 1 | 0 | + |
6 | 0 | 0 | 0 | 1 | - |
7 | 1 | 0 | 1 | 0 | + |
8 | 0 | 1 | 0 | 1 | - |
表1中的第一種開(kāi)關(guān)狀態(tài)直接切換到第二種開(kāi)關(guān)是不行的,這樣會(huì)造成電源斷路。但當(dāng)iL>0時(shí),由狀態(tài)1經(jīng)過(guò)狀態(tài)3、7、5,再切換到狀態(tài)2則是可行的。同理,iL<0時(shí),由狀態(tài)4、8、6也可實(shí)現(xiàn)狀態(tài)1到2的切換。圖4繪出了這兩種四步換流次序。 [!--empirenews.page--]
(a) iL>0 (b) iL<0
圖4 安全的四步換流次序圖
4 四步換流的死區(qū)補(bǔ)償
采用滯環(huán)比較器和過(guò)零比較器得到電流方向,并預(yù)測(cè)電流是否在死區(qū)時(shí)間內(nèi)可能過(guò)零,如果不會(huì),則第一步可以在DSP發(fā)出PWM信號(hào)之前完成,如圖5所示,則四步換流的死區(qū)共為td=tc1+tc2+tc3,死區(qū)補(bǔ)償后的死區(qū)時(shí)間共為td=tc2+tc3。
圖5 死區(qū)補(bǔ)償后的四步換流
5 GAL的四步換流方案
GAL22V10是Lattice公司生產(chǎn)的復(fù)雜可編程邏輯器件,其引腳間最大的傳輸時(shí)間為4ns,相應(yīng)的計(jì)數(shù)器頻率可達(dá)250MHz,具有電可擦除的CMOS結(jié)構(gòu)和浮動(dòng)門(mén)技術(shù),可100次重復(fù)擦寫(xiě),數(shù)據(jù)儲(chǔ)存可達(dá)20年之久。
圖6所示為矩陣式變換器的某一輸出相的三個(gè)雙向開(kāi)關(guān)狀態(tài)轉(zhuǎn)換圖。1表示為開(kāi)關(guān)導(dǎo)通,0表示開(kāi)關(guān)關(guān)斷,前兩位、中間兩位和后兩位分別表示與三個(gè)輸入相連的雙向開(kāi)關(guān)。圖中,橢圓形框表示穩(wěn)態(tài),矩形框表示暫態(tài)。可見(jiàn),要正確實(shí)現(xiàn)四步換流需要知道當(dāng)前狀態(tài)、下一時(shí)刻狀態(tài)、負(fù)載電流方向及定時(shí)器換流時(shí)間,判斷得出正確的換流信號(hào)和順序并輸出到每個(gè)IGBT器件的柵極,完成換流所需的時(shí)序邏輯。
圖6 矩陣式變換器的某一輸出相的開(kāi)關(guān)狀態(tài)轉(zhuǎn)換圖
6 實(shí)驗(yàn)仿真
圖7是實(shí)驗(yàn)中一對(duì)雙向開(kāi)關(guān)換流過(guò)程的實(shí)際波形,圖8是實(shí)驗(yàn)中兩相正向開(kāi)關(guān)換流過(guò)程的實(shí)際波形,可見(jiàn)通過(guò)DSP已成功地實(shí)現(xiàn)了開(kāi)關(guān)之間的安全換流。通過(guò)仿真軟件Matlab/Simulink也可以對(duì)矩陣式變換器(MC)雙向開(kāi)關(guān)的四步換流過(guò)程進(jìn)行驗(yàn)證,采用理想開(kāi)關(guān)對(duì)矩陣式變換器一相電路換流過(guò)程進(jìn)行仿真,其輸出電壓仿真波形如圖9所示。
圖7 一對(duì)雙向開(kāi)關(guān)換流過(guò)程實(shí)驗(yàn)波形 [!--empirenews.page--]
圖8 兩相正向開(kāi)關(guān)換流過(guò)程的實(shí)驗(yàn)波形
圖9 輸出電壓仿真波形
實(shí)驗(yàn)中采用IGBT以集電極反串聯(lián)組合構(gòu)成雙向開(kāi)關(guān),圖10是輸出線電壓實(shí)驗(yàn)波形。
x:t/10.0ms/格 y:v/200V/格
圖10 輸出線電壓實(shí)驗(yàn)波形
觀察IGBT器件上集、射極間電壓波形,可見(jiàn)四步換流可以將器件換流時(shí)產(chǎn)生的電壓過(guò)沖限制在合理選定的電壓耐量范圍內(nèi),確保器件安全工作。
7 結(jié)語(yǔ)
本文針對(duì)GAL控制的矩陣式變換器(MC)雙向開(kāi)關(guān)四步換流方案進(jìn)行,然后以DSP為核心構(gòu)成了矩陣式變換器的硬件系統(tǒng),設(shè)計(jì)了控制系統(tǒng)軟件,完成了異步電機(jī)拖動(dòng)實(shí)驗(yàn)。實(shí)驗(yàn)結(jié)果驗(yàn)證了該方案的有效性。