我很高興在我們的行業(yè)中仍然有一些公司在制造精密、分立的晶體管;線性集成系統(tǒng)是我遇到過的最好的系統(tǒng)之一。有如此多的應用需要使用優(yōu)質分立元件而不是集成電路來設計電路。
隨著 MLCC(或陶瓷電容器)因其低成本和薄型而在電子電路中日益普及,隨著越來越多的電子設備趨向于手持式,其固有的壓電效應表現(xiàn)出的可聽噪聲可能成為一個問題。
電磁干擾 (EMI) 被譽為電源設計中最困難的問題之一。我認為這種聲譽在很大程度上來自這樣一個事實:大多數(shù)與 EMI 相關的挑戰(zhàn)并不是通過查看原理圖就能解決的。這可能會令人沮喪,因為原理圖是工程師了解電路功能的中心位置。當然,您知道設計中有一些原理圖中沒有的相關功能,例如代碼。
各種工業(yè)和汽車系統(tǒng)都使用隔離式偏置電源。大多數(shù)現(xiàn)有方法使用反激式或推挽式轉換器來實現(xiàn)隔離偏置電源需要大量的設計工作,并且依賴于低漏感隔離變壓器。
電池供電的應用在過去十年中已變得司空見慣,此類設備需要一定程度的保護以確保安全使用。電池管理系統(tǒng) (BMS) 監(jiān)控電池和可能的故障情況,防止電池出現(xiàn)性能下降、容量衰減甚至可能對用戶或周圍環(huán)境造成傷害的情況。 BMS 還負責提供準確的充電狀態(tài) (SoC) 和健康狀態(tài) (SoH) 估計,以確保在電池的整個生命周期內提供信息豐富且安全的用戶體驗。設計合適的 BMS 不僅從安全角度來看至關重要,而且對于客戶滿意度而言也至關重要。
需要低電流、負高壓來偏置先進駕駛員輔助系統(tǒng)中的傳感器、聲納應用的超聲波換能器以及通信設備。反激式、Cuk 和反相降壓-升壓轉換器都是可能的解決方案,但會受到笨重變壓器(反激式和 Cuk)的不利影響,或者控制器的輸入電壓額定值(反相降壓-升壓)限制其最大負電壓。在本電源技巧中,我將詳細介紹轉換器的工作原理,該轉換器將單個電感器與在不連續(xù)導通模式 (DCM) 下運行的反相電荷泵配對。與接地參考升壓控制器配合使用,可以以較低的系統(tǒng)成本生成較大的負輸出電壓。
在反激式轉換器的標準形式中,變壓器的漏感會在初級場效應晶體管 (FET) 的漏極上產(chǎn)生電壓尖峰。為了防止該尖峰變得過度和損壞,F(xiàn)ET 需要一個鉗位網(wǎng)絡,通常帶有耗散鉗位,如圖1所示。但耗散鉗位中的功率損耗限制了反激式轉換器的效率。在本電源技巧中,我將研究反激式轉換器的兩種不同變體,它們使用非耗散鉗位技術來回收泄漏能量并提高效率。
電源轉換器通常設計用于防止出現(xiàn)不良故障。例如,如果轉換器輸出上消耗的電流過多,則可能會啟用過流保護。如果轉換器的輸出端子意外短路或負載電流超過設計的最大電流,這會很有幫助。其他常見故障情況包括超過熱關斷跳變點(過熱)和輸出電壓超出范圍(過壓或欠壓)。
在科技日新月異的今天,電池作為各類電子設備不可或缺的能源供應單元,其使用時長直接關系到用戶體驗和設備效能。從智能手機到電動汽車,從可穿戴設備到無人機,電池續(xù)航能力的準確評估與優(yōu)化已成為科技領域的重要課題。本文將從科技視角出發(fā),深入探討如何精確計算電池使用時長,涵蓋理論基礎、影響因素、計算方法及未來展望。
在開關電源中,如果MOS管的關斷和導通速度不夠快,也會產(chǎn)生附加的功率損耗?。
在嵌入式開發(fā)過程中,許多系統(tǒng)通常使用串口驅動來滿足通信要求,但在實際應用中,使用SPI通信方式會更加高效和快捷。
RC電路廣泛應用于模擬電路和脈沖數(shù)字電路中。RC并聯(lián)電路可以衰減低頻信號,而RC串聯(lián)電路可以衰減高頻信號,具有濾波作用?1。
在紙上記錄好所有元氣件的型號,參數(shù),以及位置,尤其是二極管,三級管的方向,IC缺口的方向。最好用數(shù)碼相機拍兩張元氣件位置的照片
鋰電池保護器,也被稱為保護電路板(PCB),是一種內嵌于鋰電池組中的電器元件。
LLC諧振變換器作為一種高效、高性能的電源轉換拓撲,在各種電力電子應用中得到了廣泛的應用。在超諧振狀態(tài)下,LLC變換器的關斷特性會因為負載的不同而表現(xiàn)出不同的問題和挑戰(zhàn)。LLC在超諧振下關斷中針對不同負載的問題,并提出相應的解決方案。