在現(xiàn)代電力電子系統(tǒng)中,同步整流BUCK電路因其高效率、低損耗的特點而被廣泛應(yīng)用。然而,在實際應(yīng)用中,同步整流BUCK電路的輸出紋波過大且與開關(guān)重合嚴重的問題,一直是工程師們需要面對和解決的難題。
電池驅(qū)動系統(tǒng)的設(shè)計方面,DC-DC變換器的選擇至關(guān)重要。最合適的DC-DC變換器才能滿足電池分布式并網(wǎng)發(fā)電系統(tǒng)的需求。
并聯(lián)型開關(guān)電源是一種高效的電源轉(zhuǎn)換設(shè)備,其核心在于使用高頻開關(guān)調(diào)節(jié)器將輸入的直流電壓轉(zhuǎn)換成所需的輸出電壓。
前面講了一些線性穩(wěn)壓的原理和設(shè)計的基本方法,事實上,除了一些功率較大或者對精度要求較高的電源設(shè)計。
設(shè)計一款開關(guān)電源并不難,難就難在做精,等你真正入門了,積累一定的經(jīng)驗,再采用分立的結(jié)構(gòu)進行設(shè)計就簡單多了。
pwm控制的基本原理隨著電力需求的不斷增加,電源管理技術(shù)愈加重要。開關(guān)電源作為一種高效能、可靠性高的電源,找到廣泛的應(yīng)用。
通過利用開關(guān)管的導(dǎo)通和截止兩種狀態(tài)來將電源輸入電壓變換為穩(wěn)定的輸出電壓,因此在電源設(shè)計中得到了廣泛的應(yīng)用。
隨著全球?qū)δ茉磫栴}的重視,電子產(chǎn)品的耗能問題將愈來愈突出,如何降低其待機功耗,提高供電效率成為一個急待解決的問題。
推挽式開關(guān)電源經(jīng)橋式整流或全波整流后,其輸出電壓的電壓脈動系數(shù)Sv和電流脈動系數(shù)Si都很小
可編程直流電源和線性可調(diào)電源是兩種不同類型的電源供應(yīng)設(shè)備,它們各自具有獨特的特點、優(yōu)勢和應(yīng)用場景。
就像可充電電池一樣,超級電容器需要適當(dāng)?shù)墓芾聿拍軆?yōu)化其性能并避免發(fā)生事故。在許多方面,兩者的監(jiān)管要求相似,但也存在一些差異。電源管理 IC (PMIC) 供應(yīng)商認識到這一點,并專門為這種情況開發(fā)了設(shè)備,例如 Maxim MAX38889 超級電容器備用穩(wěn)壓器(圖 1)。
本文前一部分建立了超級電容器的背景,并用簡單的術(shù)語解釋了它們的結(jié)構(gòu);顯然,這是一個具有深厚物理、化學(xué)、材料科學(xué)考慮和制造問題的組件。第一種廣泛使用的標準超級電容器于 20 世紀 70 年代末和 80 年代初進入市場。它們主要用于易失性存儲器的內(nèi)存?zhèn)浞?,但由于成本和性能問題,它們并未被大眾市場接受。然而,到了 20 世紀 90 年代,超級電容器以適中的價格上市,具有卓越的性能和可靠性,因此開始被常規(guī)設(shè)計到系統(tǒng)中。相關(guān)的維基百科參考資料對其歷史進行了相當(dāng)詳細的介紹,同樣重要的是,引用了許多信譽良好的來源,包括行業(yè)媒體上的新聞和學(xué)術(shù)期刊上的論文。
許多系統(tǒng)使用可用的線路供電或可更換電池供電。然而,在其他系統(tǒng)中,許多系統(tǒng)需要不斷捕獲、存儲然后輸送能量來為系統(tǒng)供電。電量范圍從通過物聯(lián)網(wǎng)和智能電表等遠程監(jiān)控設(shè)備的能量收集提供的微量到更大規(guī)模的電網(wǎng)級系統(tǒng)。情況是,在能量生成或捕獲時立即“實時”利用來自各種來源的能量是一回事。然而,在實際應(yīng)用中,通常需要一個能量存儲子系統(tǒng),以便將捕獲的任何能量存儲起來以供日后使用。
任何由主電源供電的電氣設(shè)備都容易受到電壓浪涌的影響。這些完全不可預(yù)測的事件可能以多種形式出現(xiàn):從正常運行期間的適度功率尖峰到外部雷擊引起的巨大功率浪涌。為了防止損壞和停機,電氣設(shè)備和電路需要配備足夠的浪涌保護。
打開一個普通的 LED 燈泡,你經(jīng)常會發(fā)現(xiàn)一個電解電容器占據(jù)了交流線路輸入的位置。雖然照明級 LED 的使用壽命通常超過 10,000 小時,但其底座中的電解電容器可能使用壽命不會那么長。造成這種不良后果的原因可能有很多種。