貝葉斯建模

我要報錯
  • 了解貝葉斯建模和機器學習概率編程

    傳統(tǒng)的機器學習模型和人工智能技術往往存在一個嚴重的缺陷:它們?nèi)狈Σ淮_定性的量化。這些模型通常提供點估計,而不考慮預測的不確定性。這種限制削弱了評估模型輸出可靠性的能力。此外,傳統(tǒng)的ML模型缺乏數(shù)據(jù),往往需要正確的標記數(shù)據(jù),因此,往往難以解決數(shù)據(jù)有限的問題。此外,這些模型缺乏將專家領域知識或先前信念納入模型的系統(tǒng)框架。如果沒有利用特定領域的洞察力的能力,模型可能會忽略數(shù)據(jù)中的關鍵細微差別,并傾向于無法發(fā)揮其潛力。毫升模型變得越來越復雜和不透明,雖然越來越多的人要求在根據(jù)數(shù)據(jù)和大赦國際作出的決定中增加透明度和問責制。

  • 了解機器學習的貝葉斯建模和概率規(guī)劃

    傳統(tǒng)機器學習 (ML) 模型和 AI 技術通常存在一個嚴重缺陷:它們?nèi)狈Σ淮_定性量化。這些模型通常提供點估計,而不考慮其預測的不確定性。這種限制削弱了評估模型輸出可靠性的能力。此外,傳統(tǒng) ML 模型需要大量數(shù)據(jù),通常需要正確標記的數(shù)據(jù),因此,在數(shù)據(jù)有限的問題上往往會遇到困難。此外,這些模型缺乏將專家領域知識或先驗信念納入模型的系統(tǒng)框架。如果無法利用特定領域的見解,模型可能會忽略數(shù)據(jù)中的關鍵細微差別,并且往往無法發(fā)揮其潛力。ML 模型正變得越來越復雜和不透明,人們越來越需要數(shù)據(jù)和人工智能做出的決策具有更高的透明度和可問責性。