當(dāng)前位置:首頁 > 芯聞號(hào) > 充電吧
[導(dǎo)讀]世界七大數(shù)學(xué)難題,每一道題解答出來都可以獲得百萬美金!

很多人都非常的害怕數(shù)學(xué),覺得數(shù)學(xué)很難,但數(shù)學(xué)早就已經(jīng)融入了我們的生活,我們生活各處都體現(xiàn)著數(shù)學(xué)。數(shù)學(xué)還在不斷的發(fā)展,但也有難以解決的難題,下面華奇網(wǎng)小編就為大家來揭秘一下世界七大數(shù)學(xué)難題,每一道題解答出來都可以獲得百萬美金!

世界七大數(shù)學(xué)難題

1、龐加萊猜想

2、NP完全問題

3、楊-米爾斯存在性和質(zhì)量缺口

4、霍奇猜想

5、納衛(wèi)爾-斯托可方程的存在性與光滑性

6、BSD猜想

7、黎曼假設(shè)

1、龐加萊猜想

如果我們伸縮圍繞一個(gè)蘋果表面的橡皮帶,那么我們可以既不扯斷它,也不讓它離開表面,使它慢慢移動(dòng)收縮為一個(gè)點(diǎn)。另一方面,如果我們想象同樣的橡皮帶以適當(dāng)?shù)姆较虮簧炜s在一個(gè)輪胎面上,那么不扯斷橡皮帶或者輪胎面,是沒有辦法把它收縮到一點(diǎn)的。我們說,蘋果表面是“單連通的”,而輪胎面不是。大約在一百年以前,龐加萊已經(jīng)知道,二維球面本質(zhì)上可由單連通性來刻畫,他提出三維球面(四維空間中與原點(diǎn)有單位距離的點(diǎn)的全體)的對(duì)應(yīng)問題。這個(gè)問題立即變得無比困難,從那時(shí)起,數(shù)學(xué)家們就在為此奮斗。

在2002年11月和2003年7月之間,俄羅斯的數(shù)學(xué)家格里戈里·佩雷爾曼在發(fā)表了三篇論文預(yù)印本,并聲稱證明了幾何化猜想。

在佩雷爾曼之后,先后有2組研究者發(fā)表論文補(bǔ)全佩雷爾曼給出的證明中缺少的細(xì)節(jié)。這包括密西根大學(xué)的布魯斯·克萊納和約翰·洛特;哥倫比亞大學(xué)的約翰·摩根和麻省理工學(xué)院的田剛。

2006年8月,第25屆國際數(shù)學(xué)家大會(huì)授予佩雷爾曼菲爾茲獎(jiǎng)。數(shù)學(xué)界最終確認(rèn)佩雷爾曼的證明解決了龐加萊猜想。

2、NP完全問題

例:在一個(gè)周六的晚上,你參加了一個(gè)盛大的晚會(huì)。由于感到局促不安,你想知道這一大廳中是否有你已經(jīng)認(rèn)識(shí)的人。宴會(huì)的主人向你提議說,你一定認(rèn)識(shí)那位正在甜點(diǎn)盤附近角落的女士羅絲。不費(fèi)一秒鐘,你就能向那里掃視,并且發(fā)現(xiàn)宴會(huì)的主人是正確的。然而,如果沒有這樣的暗示,你就必須環(huán)顧整個(gè)大廳,一個(gè)個(gè)地審視每一個(gè)人,看是否有你認(rèn)識(shí)的人。

生成問題的一個(gè)解通常比驗(yàn)證一個(gè)給定的解時(shí)間花費(fèi)要多得多。這是這種一般現(xiàn)象的一個(gè)例子。與此類似的是,如果某人告訴你,數(shù)13717421可以寫成兩個(gè)較小的數(shù)的乘積,你可能不知道是否應(yīng)該相信他,但是如果他告訴你它可以分解為3607乘上3803,那么你就可以用一個(gè)袖珍計(jì)算器容易驗(yàn)證這是對(duì)的。

人們發(fā)現(xiàn),所有的完全多項(xiàng)式非確定性問題,都可以轉(zhuǎn)換為一類叫做滿足性問題的邏輯運(yùn)算問題。既然這類問題的所有可能答案,都可以在多項(xiàng)式時(shí)間內(nèi)計(jì)算,人們于是就猜想,是否這類問題,存在一個(gè)確定性算法,可以在多項(xiàng)式時(shí)間內(nèi),直接算出或是搜尋出正確的答案呢?這就是著名的NP=P?的猜想。不管我們編寫程序是否靈巧,判定一個(gè)答案是可以很快利用內(nèi)部知識(shí)來驗(yàn)證,還是沒有這樣的提示而需要花費(fèi)大量時(shí)間來求解,被看作邏輯和計(jì)算機(jī)科學(xué)中最突出的問題之一。它是斯蒂文·考克于1971年陳述的。

3、楊-米爾斯存在性和質(zhì)量缺口

量子物理的定律是以經(jīng)典力學(xué)的牛頓定律對(duì)宏觀世界的方式對(duì)基本粒子世界成立的。大約半個(gè)世紀(jì)以前,楊振寧和米爾斯發(fā)現(xiàn),量子物理揭示了在基本粒子物理與幾何對(duì)象的數(shù)學(xué)之間的令人注目的關(guān)系。基于楊-米爾斯方程的預(yù)言已經(jīng)在如下的全世界范圍內(nèi)的實(shí)驗(yàn)室中所履行的高能實(shí)驗(yàn)中得到證實(shí):布羅克哈文、斯坦福、歐洲粒子物理研究所和駐波。盡管如此,他們的既描述重粒子、又在數(shù)學(xué)上嚴(yán)格的方程沒有已知的解。特別是,被大多數(shù)物理學(xué)家所確認(rèn)、并且在他們的對(duì)于“夸克”的不可見性的解釋中應(yīng)用的“質(zhì)量缺口”假設(shè),從來沒有得到一個(gè)數(shù)學(xué)上令人滿意的證實(shí)。在這一問題上的進(jìn)展需要在物理上和數(shù)學(xué)上兩方面引進(jìn)根本上的新觀念。

4、霍奇猜想

二十世紀(jì)的數(shù)學(xué)家們發(fā)現(xiàn)了研究復(fù)雜對(duì)象的形狀的強(qiáng)有力的辦法?;鞠敕ㄊ菃栐谠鯓拥某潭壬?,我們可以把給定對(duì)象的形狀通過把維數(shù)不斷增加的簡(jiǎn)單幾何營造塊粘合在一起來形成。這種技巧是變得如此有用,使得它可以用許多不同的方式來推廣;最終導(dǎo)致一些強(qiáng)有力的工具,使數(shù)學(xué)家在對(duì)他們研究中所遇到的形形色色的對(duì)象進(jìn)行分類時(shí)取得巨大的進(jìn)展。不幸的是,在這一推廣中,程序的幾何出發(fā)點(diǎn)變得模糊起來。在某種意義下,必須加上某些沒有任何幾何解釋的部件。霍奇猜想斷言,對(duì)于所謂射影代數(shù)簇這種特別完美的空間類型來說,稱作霍奇閉鏈的部件實(shí)際上是稱作代數(shù)閉鏈的幾何部件的(有理線性)組合。

5、納衛(wèi)爾-斯托可方程的存在性與光滑性

起伏的波浪跟隨著我們的正在湖中蜿蜒穿梭的小船,湍急的氣流跟隨著我們的現(xiàn)代噴氣式飛機(jī)的飛行。數(shù)學(xué)家和物理學(xué)家深信,無論是微風(fēng)還是湍流,都可以通過理解納維葉-斯托克斯方程的解,來對(duì)它們進(jìn)行解釋和預(yù)言。雖然這些方程是19世紀(jì)寫下的,我們對(duì)它們的理解仍然極少。挑戰(zhàn)在于對(duì)數(shù)學(xué)理論作出實(shí)質(zhì)性的進(jìn)展,使我們能解開隱藏在納維葉-斯托克斯方程中的奧秘。

6、BSD猜想

數(shù)學(xué)家總是被諸如 那樣的代數(shù)方程的所有整數(shù)解的刻畫問題著迷。歐幾里德曾經(jīng)對(duì)這一方程給出完全的解答,但是對(duì)于更為復(fù)雜的方程,這就變得極為困難。事實(shí)上,正如馬蒂雅謝維奇指出,希爾伯特第十問題是不可解的,即,不存在一般的方法來確定這樣的方程是否有一個(gè)整數(shù)解。當(dāng)解是一個(gè)阿貝爾簇的點(diǎn)時(shí),貝赫和斯維訥通-戴爾猜想認(rèn)為,有理點(diǎn)的群的大小與一個(gè)有關(guān)的蔡塔函數(shù)z(s)在點(diǎn)s=1附近的性態(tài)。特別是,這個(gè)有趣的猜想認(rèn)為,如果z(1)等于0,那么存在無限多個(gè)有理點(diǎn)(解)。相反,如果z(1)不等于0。那么只存在著有限多個(gè)這樣的點(diǎn)。

7、黎曼假設(shè)

有些數(shù)具有不能表示為兩個(gè)更小的數(shù)的乘積的特殊性質(zhì),例如,2、3、5、7……等等。這樣的數(shù)稱為素?cái)?shù);它們?cè)诩償?shù)學(xué)及其應(yīng)用中都起著重要作用。在所有自然數(shù)中,這種素?cái)?shù)的分布并不遵循任何有規(guī)則的模式;然而,德國數(shù)學(xué)家黎曼(1826~1866)觀察到,素?cái)?shù)的頻率緊密相關(guān)于一個(gè)精心構(gòu)造的所謂黎曼zeta函數(shù)ζ(s)的性態(tài)。著名的黎曼假設(shè)斷言,方程ζ(s)=0的所有有意義的解都在一條直線上。這點(diǎn)已經(jīng)對(duì)于開始的1,500,000,000個(gè)解驗(yàn)證過。證明它對(duì)于每一個(gè)有意義的解都成立將為圍繞素?cái)?shù)分布的許多奧秘帶來光明。

黎曼假設(shè)之否認(rèn):

其實(shí)雖然因素?cái)?shù)分布而起,但是卻是一個(gè)歧途,因?yàn)閭嗡財(cái)?shù)及素?cái)?shù)的普遍公式告訴我們,素?cái)?shù)與偽素?cái)?shù)由它們的變量集決定的。具體參見偽素?cái)?shù)及素?cái)?shù)詞條。


本站聲明: 本文章由作者或相關(guān)機(jī)構(gòu)授權(quán)發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點(diǎn),本站亦不保證或承諾內(nèi)容真實(shí)性等。需要轉(zhuǎn)載請(qǐng)聯(lián)系該專欄作者,如若文章內(nèi)容侵犯您的權(quán)益,請(qǐng)及時(shí)聯(lián)系本站刪除。
換一批
延伸閱讀

9月2日消息,不造車的華為或?qū)⒋呱龈蟮莫?dú)角獸公司,隨著阿維塔和賽力斯的入局,華為引望愈發(fā)顯得引人矚目。

關(guān)鍵字: 阿維塔 塞力斯 華為

倫敦2024年8月29日 /美通社/ -- 英國汽車技術(shù)公司SODA.Auto推出其旗艦產(chǎn)品SODA V,這是全球首款涵蓋汽車工程師從創(chuàng)意到認(rèn)證的所有需求的工具,可用于創(chuàng)建軟件定義汽車。 SODA V工具的開發(fā)耗時(shí)1.5...

關(guān)鍵字: 汽車 人工智能 智能驅(qū)動(dòng) BSP

北京2024年8月28日 /美通社/ -- 越來越多用戶希望企業(yè)業(yè)務(wù)能7×24不間斷運(yùn)行,同時(shí)企業(yè)卻面臨越來越多業(yè)務(wù)中斷的風(fēng)險(xiǎn),如企業(yè)系統(tǒng)復(fù)雜性的增加,頻繁的功能更新和發(fā)布等。如何確保業(yè)務(wù)連續(xù)性,提升韌性,成...

關(guān)鍵字: 亞馬遜 解密 控制平面 BSP

8月30日消息,據(jù)媒體報(bào)道,騰訊和網(wǎng)易近期正在縮減他們對(duì)日本游戲市場(chǎng)的投資。

關(guān)鍵字: 騰訊 編碼器 CPU

8月28日消息,今天上午,2024中國國際大數(shù)據(jù)產(chǎn)業(yè)博覽會(huì)開幕式在貴陽舉行,華為董事、質(zhì)量流程IT總裁陶景文發(fā)表了演講。

關(guān)鍵字: 華為 12nm EDA 半導(dǎo)體

8月28日消息,在2024中國國際大數(shù)據(jù)產(chǎn)業(yè)博覽會(huì)上,華為常務(wù)董事、華為云CEO張平安發(fā)表演講稱,數(shù)字世界的話語權(quán)最終是由生態(tài)的繁榮決定的。

關(guān)鍵字: 華為 12nm 手機(jī) 衛(wèi)星通信

要點(diǎn): 有效應(yīng)對(duì)環(huán)境變化,經(jīng)營業(yè)績(jī)穩(wěn)中有升 落實(shí)提質(zhì)增效舉措,毛利潤率延續(xù)升勢(shì) 戰(zhàn)略布局成效顯著,戰(zhàn)新業(yè)務(wù)引領(lǐng)增長(zhǎng) 以科技創(chuàng)新為引領(lǐng),提升企業(yè)核心競(jìng)爭(zhēng)力 堅(jiān)持高質(zhì)量發(fā)展策略,塑強(qiáng)核心競(jìng)爭(zhēng)優(yōu)勢(shì)...

關(guān)鍵字: 通信 BSP 電信運(yùn)營商 數(shù)字經(jīng)濟(jì)

北京2024年8月27日 /美通社/ -- 8月21日,由中央廣播電視總臺(tái)與中國電影電視技術(shù)學(xué)會(huì)聯(lián)合牽頭組建的NVI技術(shù)創(chuàng)新聯(lián)盟在BIRTV2024超高清全產(chǎn)業(yè)鏈發(fā)展研討會(huì)上宣布正式成立。 活動(dòng)現(xiàn)場(chǎng) NVI技術(shù)創(chuàng)新聯(lián)...

關(guān)鍵字: VI 傳輸協(xié)議 音頻 BSP

北京2024年8月27日 /美通社/ -- 在8月23日舉辦的2024年長(zhǎng)三角生態(tài)綠色一體化發(fā)展示范區(qū)聯(lián)合招商會(huì)上,軟通動(dòng)力信息技術(shù)(集團(tuán))股份有限公司(以下簡(jiǎn)稱"軟通動(dòng)力")與長(zhǎng)三角投資(上海)有限...

關(guān)鍵字: BSP 信息技術(shù)
關(guān)閉
關(guān)閉