AI用于小型機器需考慮什么?企業(yè)為AI平臺選擇存儲需考慮3點
在這篇文章中,小編將為大家?guī)?a href="/tags/人工智能" target="_blank">人工智能的相關(guān)報道。如果你對本文即將要講解的內(nèi)容存在一定興趣,不妨繼續(xù)往下閱讀哦。
一、人工智能用于小型機器需考慮什么
既然人工智能對小型機器具有實用價值,為何沒有被大量開發(fā)呢?答案是受限于算力。人工智能推理是神經(jīng)網(wǎng)絡(luò)模型計算的結(jié)果??梢园焉窠?jīng)網(wǎng)絡(luò)模型看作是大腦處理圖像或聲音的粗略近似形態(tài),將其分解為非常小的片段,然后在這些小碎片組合在一起時識別出模型?,F(xiàn)代化視覺問題的主要模型是卷積神經(jīng)網(wǎng)絡(luò)(CNN)。這類模型在圖像分析方面非常出色,在音頻分析方面也非常有用。問題在于,這些模型需要數(shù)百萬或數(shù)十億次的數(shù)學(xué)計算。對于傳統(tǒng)硬件設(shè)計,這些應(yīng)用在實施時卻會面臨一些困難抉擇:
- 使用低成本、低功耗的微控制器解決方案。雖然平均功耗可能很低,但卷積神經(jīng)網(wǎng)絡(luò)可能需要幾秒鐘時間來計算,這意味著人工智能推理不是實時的,并會消耗大量的電池電量。
-購置一個昂貴的高性能處理器,能在規(guī)定延遲內(nèi)完成這些數(shù)學(xué)運算。不過,這些處理器通常很大,需要很多外部組件,包括散熱器或類似的冷卻組件。好處是,它們執(zhí)行人工智能推理的速度非常快。
-低功耗微控制器解決方案的速度太慢,無法發(fā)揮作用,而高性能處理器方法會超出成本、尺寸和電源預(yù)算,可以說上述兩種方案都不夠理想,難以實施。
由此可見,人們需要的是一種全新的嵌入式人工智能解決方案,盡可能減少卷積神經(jīng)網(wǎng)絡(luò)計算所需的能耗。人工智能推理需要以比傳統(tǒng)微控制器或處理器解決方案更少的能量來執(zhí)行,并且無需借助能耗高、尺寸大、成本大的外部組件(如存儲器)。如果人工智能推理解決方案實際上能夠消除機器視覺的能量損失,那么即便是最小的設(shè)備也能看到并識別周圍世界發(fā)生的事情。
二、企業(yè)為AI平臺選擇存儲需考慮3點
在企業(yè)為AI平臺選擇存儲設(shè)備之前,必須首先考慮以下幾點:
1、成本。AI數(shù)據(jù)存儲設(shè)備的價格對企業(yè)來說是一個關(guān)鍵因素。顯然,高管層和那些參與采購決策的人會希望存儲盡可能具有成本效益,在許多情況下,這將影響組織的產(chǎn)品選擇和策略。
2、可伸縮性。如上文所說,在創(chuàng)建機器學(xué)習(xí)或AI模型的過程中,收集、存儲和處理大量數(shù)據(jù)是非常必要的。機器學(xué)習(xí)算法要求源數(shù)據(jù)呈指數(shù)增長,才能實現(xiàn)精度的線性提高。創(chuàng)建可靠而準確的機器學(xué)習(xí)模型可能需要數(shù)百TB甚至PB的數(shù)據(jù),而且這只會隨著時間的推移而增加。
存儲成本的變化引入了分層存儲或使用多種類型的存儲來存儲數(shù)據(jù)的概念。例如,對象存儲是存儲大量不活躍的AI數(shù)據(jù)的良好目標。當需要處理數(shù)據(jù)時,可以將數(shù)據(jù)移動到對象存儲中的高性能文件存儲集群或節(jié)點上,一旦處理完成,就可以將數(shù)據(jù)移動回來。
3、性能。AI數(shù)據(jù)的存儲性能有三個方面。首先,可能也是最重要的是延遲,也就是軟件處理每個I/O請求的速度。低延遲很重要,因為改善延遲對創(chuàng)建機器學(xué)習(xí)或AI模型所需的時間有直接影響。復(fù)雜的模型開發(fā)可能需要數(shù)周或數(shù)月的時間。通過縮短這個開發(fā)周期,組織可以更快地創(chuàng)建和細化模型。在檢查延遲能力時,由于對象訪問的流特性,對象將引用時間存儲為第一個字節(jié),而不是單個I/O請求的延遲。
機器學(xué)習(xí)數(shù)據(jù)可以由大量的小文件組成。在這個領(lǐng)域,文件服務(wù)器可以提供比對象存儲更好的性能。這里需要問AI存儲方案供應(yīng)商的一個關(guān)鍵問題是,在大文件類型和小文件類型上,他們的產(chǎn)品的性能特征會如何變化。
上述所有信息便是小編這次為大家推薦的有關(guān)人工智能的內(nèi)容,希望大家能夠喜歡,想了解更多有關(guān)它的信息或者其它內(nèi)容,請關(guān)注我們網(wǎng)站哦。