當(dāng)前位置:首頁 > 模擬 > 模擬
[導(dǎo)讀]理論上,一個(gè)ADC的SNR(信號(hào)與噪聲的比值)等于(6.02N+1.76)dB,這里N等于ADC的位數(shù)。雖然我的數(shù)學(xué)技巧有點(diǎn)生疏,但我認(rèn)為任何一個(gè)16位轉(zhuǎn)換器的信噪比應(yīng)該是98.08dB。但當(dāng)我查看模數(shù)轉(zhuǎn)換器 的數(shù)據(jù)手冊(cè)時(shí),我看到一些不

理論上,一個(gè)ADCSNR(信號(hào)與噪聲的比值)等于(6.02N+1.76)dB,這里N等于ADC的位數(shù)。雖然我的數(shù)學(xué)技巧有點(diǎn)生疏,但我認(rèn)為任何一個(gè)16位轉(zhuǎn)換器的信噪比應(yīng)該是98.08dB。但當(dāng)我查看模數(shù)轉(zhuǎn)換器 的數(shù)據(jù)手冊(cè)時(shí),我看到一些不同的情況。比如,16位的(逐次逼近型)模數(shù)轉(zhuǎn)換器指標(biāo)的典型值通??傻椭?4dB高達(dá)95dB。生產(chǎn)廠家很自豪地把這些值寫 在產(chǎn)品的數(shù)據(jù)手冊(cè)的首頁,而且坦率地說,信噪比為95dB的16位ADC具有競(jìng)爭(zhēng)力。除非我錯(cuò)了,計(jì)算的98.08dB高于所找到最好的16位ADC數(shù)據(jù) 手冊(cè)中的96dB。那么,這些位數(shù)到那去了?

  讓我們先找出理想化的公式(6.02N+1.76)從何而來。任何系統(tǒng)的信噪比,用分貝來表示的話,等于20log10(信號(hào)的均方根/噪音的均方根)。推導(dǎo)出理想的信噪比公式時(shí),首先定義信號(hào)的均方根。如果把信號(hào)的峰峰值轉(zhuǎn)換為均方根,則除以 即可。ADC的均方根信號(hào)用位數(shù)表示等于,這里q是LSB(最低有效位)。

  所有ADC產(chǎn)生量化噪聲是把輸入信號(hào)抽樣成離散“桶”的后果。這些桶的理想寬度等于轉(zhuǎn)換器LSB的大小。任何ADC位的不確定值是±1/2 LSB

 

。如果假定對(duì)應(yīng)每個(gè)位誤差的響應(yīng)是三角形的話,則其均方根等于LSB信號(hào)的幅值除以,均方根的噪聲則。

 

  綜合均方根和均方根噪聲條件,理想ADC的SNR用分貝表示為:

  重復(fù)剛才的問題,那些位數(shù)到底去那了? 那些ADC的供應(yīng)商熱情地解釋這個(gè)失位現(xiàn)象,因?yàn)樗麄兊谋姸嘣囼?yàn)裝置表明產(chǎn)品具有良好的信噪比。從根本上說,他們認(rèn)為電阻和晶體管的噪聲導(dǎo)致了這種結(jié)果。供應(yīng)商測(cè)試其ADC的SNR是通過將他們的數(shù)據(jù)帶入下面的公式:

  這些理論和測(cè)試SNR的公式是完善的,但他們只能提供部分你需要知道的轉(zhuǎn)換器到底能給予你的位數(shù)。THD (總諧波失真),另一個(gè)要注意的ADC指標(biāo),定義為諧波成分的均方根和,或者是輸入信號(hào)功率的比值

或者

這里HDx是x次諧波失真諧波的幅值,PS是一次諧波的信號(hào)功率,Po是二次到八次諧波的功率。ADC的重要指標(biāo),INL(積分非線性)誤差清晰地出現(xiàn)在THD結(jié)果中。

  最后,SINAD(信號(hào)與噪聲+失真比)定義為信號(hào)基波輸入的RMS值與在半采樣頻率之下其它諧波成分RMS值之和的比值,但不包括直流信號(hào)。對(duì) SAR和流水線型而言,SINAD的理論最小值等于理想的信噪比,或6.02N+1.76dB。至于Δ-Σ轉(zhuǎn)換器的理想SINAD等于 (6.02N+1.76dB+,其中fS是轉(zhuǎn)換器采樣頻率,BW是感興趣的最大帶寬。非理想SINAD值為或者

       其中PS是基波信號(hào)功率,PN是所有噪聲譜成分的功率,PD是失真譜成分功率。

  因此,下一次當(dāng)你尋找丟失的位數(shù)時(shí),記住它是結(jié)合了SNR、THD和SINAD等多個(gè)指標(biāo),這些可以讓您全面了解ADC的真實(shí)位數(shù)--無論它采用的是逐次逼近型、流水線型還是Δ-Σ技術(shù),不管在數(shù)據(jù)手冊(cè)的第一頁中提到有多少位。

       附英文原文:

  SNR in ADCs: Where did all the bits go?

  Theoretically, the SNR for any 16-bit converter should be 98.08 dB. But I see something different when I read converter data sheets.

  By Bonnie Baker -- EDN, 6/7/2007

  Theoretically, the SNR (signal-to-noise ratio) of an ADC is equal to (6.02N+1.76) dB, where N equals the number of ADC bits. Although I’m a little rusty with my algebra skills, I think that the SNR for any 16-bit converter should be 98.08 dB. However, I see something different when I read converter data sheets. For instance, the specification for a 16-bit SAR (successive-approximation-register) converter can typically be as low as 84 dB and as high as 95 dB. Manufacturers proudly advertise these values on the front page of their data sheets, and, frankly, an SNR of 95 dB for a 16-bit SAR converter is competitive. Unless I am wrong, the 98.08 dB I calculate is higher than the 95-dB specification that I find with the best of the 16-bit-converter data sheets. So, where did the bits go?

 

  Let’s start by finding out where this ideal formula, 6.02N+1.76, comes from. The SNR of any system, in decibels, is equal to 20 log10 (rms signal/rms noise). When you d

 

erive the ideal SNR formula, you first define the rms signal. If you change a peak-to-peak signal to rms, you divide it by the The ADC rms signal in bits is equal where q is the LSB (least-significant bit).

 

  All ADCs generate quantization noise as a consequence of dividing the input signal into discrete “buckets.” The ideal width of these buckets is equal to the converter’s LSB size. The uncertainty of any ADC bit is ±1/2 LSB. If you assume that this error’s response is triangular across each bit, the rms value equals this LSB signal’s magnitude divided by:rms noise

  Combining the rms-signal and rms-noise terms, the ideal ADC SNR in decibels is:

  Again, where did the bits go? The ADC vendors enthusiastically explain the missing-bits phenomenon, because they bench-test their devices to see how good the SNR is. Fundamentally, they find that the device noise from resistors and transistors creeps into the results. Vendors test their ADC SNR by inputting their data into the following formula:

  These theoretical and tested SNR formulas are complete, but they provide only part of what you need to know about how many bits your converter is truly giving you. THD (total harmonic distortion), another ADC specification you need to watch, is the ratio of the rms sum of the powers of the harmonic components, or spurs, to the input-signal power: 

or

  where HDx is the magnitude of distortion at the Xth harmonic, PS is the signal power of the first harmonic, and PO is the power of harmonics two through eight. Significant ADC INL (integral-nonlinearity) errors typically appear in the THD results.

 

  Finally, SINAD (signal-to-noise and distortion) is the ratio of the fundamental input signal’s rms amplitude to the rms sum of all other spectral components below half of the sampling frequency, excluding dc. The theoretical minimum for SINAD is equal to the ideal SNR, or 6.02N+1.76 dB, with SAR and pipeline converters. For delta-sigma converters, the ideal SINAD equals 6.02N+1.76 dB+10 log10(fS/(2BW)), where fS is the converter sampling frequency and BW is the maximum bandwidth of interest. The not-so-ideal value of SINAD is  or.

  where PS is the fundamental signal power, PN is the power of all the noise spectral components, and PD is the power of all the distortion spectral components.

  So, the next time you’re looking for lost bits, remember that it is the combination of SNR, THD, and SINAD that gives you the complete picture of the real bits in your ADC—regardless of whether it’s SAR, pipeline, or delta-sigma technology and regardless of the number of bits that the first page of the data sheet mentions.

本站聲明: 本文章由作者或相關(guān)機(jī)構(gòu)授權(quán)發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點(diǎn),本站亦不保證或承諾內(nèi)容真實(shí)性等。需要轉(zhuǎn)載請(qǐng)聯(lián)系該專欄作者,如若文章內(nèi)容侵犯您的權(quán)益,請(qǐng)及時(shí)聯(lián)系本站刪除。
換一批
延伸閱讀

9月2日消息,不造車的華為或?qū)⒋呱龈蟮莫?dú)角獸公司,隨著阿維塔和賽力斯的入局,華為引望愈發(fā)顯得引人矚目。

關(guān)鍵字: 阿維塔 塞力斯 華為

倫敦2024年8月29日 /美通社/ -- 英國(guó)汽車技術(shù)公司SODA.Auto推出其旗艦產(chǎn)品SODA V,這是全球首款涵蓋汽車工程師從創(chuàng)意到認(rèn)證的所有需求的工具,可用于創(chuàng)建軟件定義汽車。 SODA V工具的開發(fā)耗時(shí)1.5...

關(guān)鍵字: 汽車 人工智能 智能驅(qū)動(dòng) BSP

北京2024年8月28日 /美通社/ -- 越來越多用戶希望企業(yè)業(yè)務(wù)能7×24不間斷運(yùn)行,同時(shí)企業(yè)卻面臨越來越多業(yè)務(wù)中斷的風(fēng)險(xiǎn),如企業(yè)系統(tǒng)復(fù)雜性的增加,頻繁的功能更新和發(fā)布等。如何確保業(yè)務(wù)連續(xù)性,提升韌性,成...

關(guān)鍵字: 亞馬遜 解密 控制平面 BSP

8月30日消息,據(jù)媒體報(bào)道,騰訊和網(wǎng)易近期正在縮減他們對(duì)日本游戲市場(chǎng)的投資。

關(guān)鍵字: 騰訊 編碼器 CPU

8月28日消息,今天上午,2024中國(guó)國(guó)際大數(shù)據(jù)產(chǎn)業(yè)博覽會(huì)開幕式在貴陽舉行,華為董事、質(zhì)量流程IT總裁陶景文發(fā)表了演講。

關(guān)鍵字: 華為 12nm EDA 半導(dǎo)體

8月28日消息,在2024中國(guó)國(guó)際大數(shù)據(jù)產(chǎn)業(yè)博覽會(huì)上,華為常務(wù)董事、華為云CEO張平安發(fā)表演講稱,數(shù)字世界的話語權(quán)最終是由生態(tài)的繁榮決定的。

關(guān)鍵字: 華為 12nm 手機(jī) 衛(wèi)星通信

要點(diǎn): 有效應(yīng)對(duì)環(huán)境變化,經(jīng)營(yíng)業(yè)績(jī)穩(wěn)中有升 落實(shí)提質(zhì)增效舉措,毛利潤(rùn)率延續(xù)升勢(shì) 戰(zhàn)略布局成效顯著,戰(zhàn)新業(yè)務(wù)引領(lǐng)增長(zhǎng) 以科技創(chuàng)新為引領(lǐng),提升企業(yè)核心競(jìng)爭(zhēng)力 堅(jiān)持高質(zhì)量發(fā)展策略,塑強(qiáng)核心競(jìng)爭(zhēng)優(yōu)勢(shì)...

關(guān)鍵字: 通信 BSP 電信運(yùn)營(yíng)商 數(shù)字經(jīng)濟(jì)

北京2024年8月27日 /美通社/ -- 8月21日,由中央廣播電視總臺(tái)與中國(guó)電影電視技術(shù)學(xué)會(huì)聯(lián)合牽頭組建的NVI技術(shù)創(chuàng)新聯(lián)盟在BIRTV2024超高清全產(chǎn)業(yè)鏈發(fā)展研討會(huì)上宣布正式成立。 活動(dòng)現(xiàn)場(chǎng) NVI技術(shù)創(chuàng)新聯(lián)...

關(guān)鍵字: VI 傳輸協(xié)議 音頻 BSP

北京2024年8月27日 /美通社/ -- 在8月23日舉辦的2024年長(zhǎng)三角生態(tài)綠色一體化發(fā)展示范區(qū)聯(lián)合招商會(huì)上,軟通動(dòng)力信息技術(shù)(集團(tuán))股份有限公司(以下簡(jiǎn)稱"軟通動(dòng)力")與長(zhǎng)三角投資(上海)有限...

關(guān)鍵字: BSP 信息技術(shù)
關(guān)閉
關(guān)閉