基于CPLD的MIDI播放器設(shè)計及調(diào)試
引言
大規(guī)??删幊踢壿嬈骷?strong>CPLD和FPGA是當(dāng)今應(yīng)用最廣泛的兩類可編程邏輯器件,電子設(shè)計工程師利用它可以在辦公室或?qū)嶒炇以O(shè)計出所自己所需要的專用芯片和專用產(chǎn)品,從而大大縮短了產(chǎn)品上市時間,降低了開發(fā)成本。此外,可編程邏輯器件還具有靜態(tài)可重復(fù)編程和動態(tài)在系統(tǒng)重構(gòu)的特性,使得硬件的功能可以像軟件一樣通過編程來修改,這樣就極大的提高了電子系統(tǒng)設(shè)計的靈活性和通用性。
1 工作原理
MIDI音樂是Windows下的一種合成音樂,由于它通過記譜的方式來記錄一段音樂,因此與wave 音樂相比,它可以極大的減少存儲容量。MIDI音樂的基本原理:組成樂曲的每一個音符的頻率值(音調(diào))及其持續(xù)的時間(音長)是樂曲能連續(xù)演奏的兩個基本數(shù)據(jù),因此只要控制輸出到揚聲器的激勵信號的頻率的高低和每個頻率信號持續(xù)時間,就可以使揚聲器發(fā)出連續(xù)的樂曲。
圖1是本文設(shè)計的音樂播放器的原理框圖。該音樂編碼器內(nèi)儲存著預(yù)先設(shè)定的四首歌曲的編碼,通過改變音樂選擇開關(guān)的狀態(tài)可以決定當(dāng)前要播放哪首音樂。音樂編碼器控制著音調(diào)發(fā)生器和彩燈閃爍控制器,每當(dāng)音樂節(jié)奏時鐘送給音樂編碼器一個時鐘脈沖時,音樂編碼器就將當(dāng)前要播放的音符的編碼送給音調(diào)發(fā)生器和彩燈閃爍控制器。音調(diào)發(fā)生器根據(jù)編碼對應(yīng)的分頻系數(shù)將2MHz的基準(zhǔn)時鐘分頻,得到當(dāng)前要播放的音符所對應(yīng)頻率的脈沖,再用這個脈沖去激勵揚聲器,就可以得到這個音符的聲音。彩燈閃爍控制器根據(jù)編碼將當(dāng)前要播放的音符對應(yīng)的彩燈亮滅狀態(tài)送給彩燈。
其中音調(diào)發(fā)生器、音樂編碼器、彩燈控制器這三項功能可由ALTERA公司可編程邏輯器件(CPLD)EPF10LC84-4芯片,采用VHDL語言來完成[1-3]。音頻放大器、彩燈、各種時鐘可由具體的外圍電路來實現(xiàn)。
2.MIDI音樂發(fā)生器芯片的設(shè)計
本設(shè)計的關(guān)鍵是要準(zhǔn)確地產(chǎn)生音樂中各音符所對應(yīng)的頻率信號,并根據(jù)樂曲要求按節(jié)拍輸出。為了減少系統(tǒng)復(fù)雜性,本設(shè)計根據(jù)可變模值計數(shù)器的原理,按照樂曲要求定時改變計數(shù)器的預(yù)置數(shù),即可產(chǎn)生樂曲所需要的頻率信號。芯片原理框圖如圖2所示,芯片是采用VHDL硬件描述語言,在MUXPLUS II環(huán)境下設(shè)計的。
圖中節(jié)拍控制電路產(chǎn)生節(jié)拍定時信號;音符產(chǎn)生電路按節(jié)拍要求產(chǎn)生樂曲所需要的音符;預(yù)值數(shù)產(chǎn)生電路受音符控制,產(chǎn)生該音符頻率相對應(yīng)的預(yù)置數(shù),送計數(shù)器的置入數(shù)據(jù)輸入端。音符頻率發(fā)生器根據(jù)不同的預(yù)置數(shù)產(chǎn)生相應(yīng)的頻率信號,從而完成樂曲的演奏功能。
3 外圍電路設(shè)計
3.1 音樂節(jié)奏時鐘和彩燈閃爍節(jié)奏時鐘產(chǎn)生電路
我們需要的音樂節(jié)奏時鐘是一個4Hz左右的時鐘脈沖,其頻率很低,利用555定時器構(gòu)成的多諧振蕩器即可產(chǎn)生,如圖3所示。
555集成定時器是一種將模擬功能與邏輯功能巧妙結(jié)合在一起的混合集成電路,555定時器構(gòu)成的多諧振蕩器電路圖如圖3所示,由3腳輸出的脈沖頻率的計算公式為:
改變可變電阻的阻值就可以改變輸出頻率。我們要求輸出的頻率為4Hz,C=47Uf,所以R1+R2應(yīng)為7.66K。
音樂節(jié)奏時鐘對整個音樂播放器的作用至關(guān)重要,要求音樂節(jié)奏時鐘脈沖非常穩(wěn)定,這樣才能保證音樂的流暢播放,否則播放出來的將是一段雜亂無章的聲音,就不是音樂而是噪聲了。為了使輸出的脈沖比較穩(wěn)定、減少外界干擾,將輸出的脈沖再經(jīng)過D觸發(fā)器(7474)后送給CPLD芯片,因此555定時器件腳輸出的脈沖頻率應(yīng)提高一倍(即8Hz),這樣R1+R2的阻值應(yīng)為3.83K。
彩燈閃爍節(jié)奏時鐘產(chǎn)生電路與音樂節(jié)奏時鐘產(chǎn)生電路原理相同,也是用555定時器構(gòu)成的多諧振蕩器來實現(xiàn),只是彩燈控制時鐘產(chǎn)生電路的頻率要比音樂節(jié)奏時鐘產(chǎn)生電路的頻率高,在十幾到幾十赫茲之間,它的R2值不定,可根據(jù)自己的要求來定,如果想要彩燈閃爍快點則頻率就高一些,想閃爍頻率慢就低一些。
3.2 音頻功率放大電路
由CPLD芯片輸出的音頻信號很微弱,不能直接去驅(qū)動揚聲器,因此需要一個音頻放大電路對輸出的音頻信號進(jìn)行放大,然后再去驅(qū)動揚聲器。我們采用由集成功率放大器LM386組成的音頻功率放大器,如圖4所示。其中,C2是交流耦合電容,將功率放大器的交流輸出送到負(fù)載上,輸出信號通過Rw接到LM386的同相端。C1是退耦電容,R1-C3網(wǎng)絡(luò)起到消除高頻自激振蕩作用。
3.3 音樂選擇開關(guān)與彩燈閃爍控制電路
這兩部分電路很簡單,在音樂選擇開關(guān)電路中(圖5)S1斷開時A端為高電平,閉合時A端為低電平,S2 斷開時B端為高電平,閉合時B端為低電平,通過S1、S2的開與關(guān)來改變A、B的狀態(tài),從而實現(xiàn)對四首音樂的選擇。
彩燈閃爍控制電路(圖6)是由發(fā)光二極管構(gòu)成的,A、B、C、D、E、F、G、H八端電平的高低變化控制著八個發(fā)光二極管的亮滅。
4 系統(tǒng)調(diào)試
把以上各部分電路與預(yù)先設(shè)計好的MIDI音樂發(fā)生器芯片(EPF10LC84-4)連接起來,形成整個系統(tǒng)。
系統(tǒng)調(diào)試主要是對音樂節(jié)奏時鐘、彩燈控制時鐘的頻率和音頻功率放大電路進(jìn)行調(diào)試。
1.音樂節(jié)奏時鐘的調(diào)試:音樂節(jié)奏時鐘理論要求時4Hz,在實際的演奏過程中頻率稍微高于4Hz效果較好,通過改變R1的電阻來改變音樂節(jié)奏時鐘,從而改變音樂節(jié)奏。表1是音樂節(jié)奏時鐘調(diào)試過程中的記錄。
表1 音樂節(jié)奏時鐘調(diào)試記錄
經(jīng)過比較,最終將R1的阻值定在3.4 KΩ,音樂節(jié)奏時鐘的頻率為4.5 Hz。
2.彩燈控制時鐘的調(diào)試:彩燈控制時鐘頻率要求在十幾到幾十赫茲之間。表2是彩燈控制時鐘調(diào)試過程中的記錄。
2.彩燈控制時鐘的調(diào)試:彩燈控制時鐘頻率要求在十幾到幾十赫茲之間。
表2 彩燈控制時鐘調(diào)試記錄
經(jīng)過比較,最終將R1的阻值定在0.958 KΩ,彩燈控制時鐘的頻率為16Hz。
3.音頻功率放大的調(diào)試:通過調(diào)節(jié)RW的阻值來改變輸入到音頻放大器LM386的音頻信號的電壓值,調(diào)試結(jié)果如表3。
表3 音頻放大調(diào)試記錄