當(dāng)前位置:首頁 > 工業(yè)控制 > 工業(yè)控制
[導(dǎo)讀]摘要:在對低噪聲CMOS圖像傳感器的研究中,除需關(guān)注其噪聲外,目前數(shù)字化也是它的一個重要的研究和設(shè)計(jì)方向,設(shè)計(jì)了一種可用于低噪聲CMOS圖像傳感器的12 bit,10 Msps的流水線型ADC,并基于0.5μm標(biāo)準(zhǔn)CMOS工藝進(jìn)行

摘要:在對低噪聲CMOS圖像傳感器的研究中,除需關(guān)注其噪聲外,目前數(shù)字化也是它的一個重要的研究和設(shè)計(jì)方向,設(shè)計(jì)了一種可用于低噪聲CMOS圖像傳感器的12 bit,10 Msps的流水線型ADC,并基于0.5μm標(biāo)準(zhǔn)CMOS工藝進(jìn)行了流片。最后,通過在PCB測試版上用本文設(shè)計(jì)的ADC實(shí)現(xiàn)了模擬輸出的低噪聲CMOS圖像傳感器的模數(shù)轉(zhuǎn)換,并基于自主開發(fā)的成像測試系統(tǒng)進(jìn)行了成像驗(yàn)證,結(jié)果表明,成像畫面清晰,該ADC可作為低噪聲CMOS圖像傳感器的芯片級模數(shù)轉(zhuǎn)換器應(yīng)用。
關(guān)鍵詞:流水線ADC;低噪聲CMOS圖像傳感器;成像;Labview

    CMOS圖像傳感器(CMOS image sensor,CIS)在近二十年來取得了飛速的發(fā)展,得益于有源像素傳感器(Active PixelSensor)的出現(xiàn)、相關(guān)雙采樣技術(shù)(Correlated Double Sampling)的發(fā)明以及工藝的進(jìn)步等,用于低噪聲應(yīng)用領(lǐng)域的CMOS圖像傳感器也取得了長足的發(fā)展。由于CMOS傳感器具有先天的低成本、易于集成等優(yōu)點(diǎn),CMOS傳感器在低噪聲應(yīng)用領(lǐng)域也已引起了越來越多的關(guān)注。目前,在低噪聲CMOS圖像傳感器的研究領(lǐng)域,除研究其噪聲外,數(shù)字化也是它的一個重要的研究方向。
    文中介紹了一種適用于低噪聲CMOS圖像傳感器芯片級模數(shù)轉(zhuǎn)換的流水線型ADC,根據(jù)低噪聲CMOS圖像傳感器的系統(tǒng)要求,文中設(shè)計(jì)的ADC的分辨率為12 bit,速度為10 Msps,采用了每級1.5 bit、共11級的流水線型結(jié)構(gòu)。在該ADC完成設(shè)計(jì)仿真后,基于0.5μm標(biāo)準(zhǔn)CMOS工藝進(jìn)行了流片。最后在PCB板級電路上用該ADC對一個自主設(shè)計(jì)的模擬輸出的CMOS圖像傳感器進(jìn)行了模數(shù)轉(zhuǎn)換,并基于自主設(shè)計(jì)的成像測試系統(tǒng)完成了CMOS圖像傳感器的成像。

1 ADC設(shè)計(jì)指標(biāo)及框架
    根據(jù)自主設(shè)計(jì)的低噪聲CMOS圖像傳感器的系統(tǒng)要求,可以確定流水線ADC的設(shè)計(jì)指標(biāo)。表1給出了該設(shè)計(jì)的具體設(shè)計(jì)指標(biāo)。


    由于該ADC設(shè)計(jì)目標(biāo)為應(yīng)用在自主設(shè)計(jì)的低噪聲CMOS圖像傳感器的芯片級,因此其速度和精度都應(yīng)盡可能的高,以達(dá)到芯片系統(tǒng)低噪聲和速度的要求。而由于其工作在芯片級,其功耗和面積的要求則可以相對寬松一些。因此本設(shè)計(jì)采用了11級,1.5 bit每級的結(jié)構(gòu),雖然這種結(jié)構(gòu)在功耗上會有所增加,但是可以降低比較器的比較精度帶來的影響,同時也降低了對第一級采樣保持電路運(yùn)放的要求。本文設(shè)計(jì)的ADC的結(jié)構(gòu)框圖如圖1所示,在該ADC11級結(jié)構(gòu)中的前10級電路中,每級電路包括子模數(shù)轉(zhuǎn)換器(ADC)、子數(shù)模轉(zhuǎn)換器(DAC)、求和電路、余量放大器以及采樣保持電路,其中由于子DAC、采樣保持電路、求和電路以及余量放大電路一般都由一個開關(guān)電容電路實(shí)現(xiàn),因此該電路模塊常被統(tǒng)稱為乘法型數(shù)模轉(zhuǎn)換器(Multiplying digital to analog converter,MDAC),第11級電路為一個2 bit的flash ADC。在兩組互不相交時鐘CLK1和CLK2的控制下,每級電路都產(chǎn)生了數(shù)字輸出,這些輸出在經(jīng)過數(shù)字位對齊和數(shù)字校準(zhǔn)后得到最終的數(shù)字輸出。



2 ADC各模塊設(shè)計(jì)
2.1 MDAC設(shè)計(jì)
    MDAC電路是流水線ADC設(shè)計(jì)中非常重要的部分,它在ADC中實(shí)現(xiàn)的功能包括采樣保持、數(shù)模轉(zhuǎn)換、減法和余量放大等,一般采用開關(guān)電容技術(shù)實(shí)現(xiàn),由模擬開關(guān)、電容和跨導(dǎo)運(yùn)算放大器(OTA)構(gòu)成,其電路圖如圖2所示。其工作原理是:用MDAC的采樣保持對前級余量電壓進(jìn)行采樣;將其采樣電壓與本級子DAC的輸出電壓進(jìn)行減法運(yùn)算;將減法運(yùn)算得到的余量電壓通過余量放大器進(jìn)行放大。


    在流水線ADC結(jié)構(gòu)中,第一級的MDAC的要求最高,隨著級數(shù)的增加,要求不斷降低。對于一個12位、10 Msps采樣率流水線ADC,以第一級MDAC為例,該電路需滿足的總體指標(biāo)為:精度12 bit,采樣率10 Msps。而在MDAC設(shè)計(jì)中,最關(guān)鍵的是余量放大器設(shè)計(jì),本文以第一級余量放大器的設(shè)計(jì)為例來說明整個設(shè)計(jì),其中采用的余量放大器的結(jié)構(gòu)如圖3所示。余量放大器工作在閉環(huán)狀態(tài),要求其有限直流增益造成的誤差小于1/2LSB,即有:
    
    式中A0為開環(huán)增益,N為ADC分辨率,β為反饋系數(shù)。


    另外,由于余量放大器有限的帶寬,因此對輸入電壓響應(yīng)需要經(jīng)過一定的時間才能趨于穩(wěn)定。在采樣頻率為f的ADC中,要求信號在二分之一的時鐘周期內(nèi)達(dá)到所需的精度(即誤差小于1/2LSB),即有:
    
    式中GBW為單位增益帶寬,N為ADC分辨率,β為反饋系數(shù),f為采樣頻率。
    對于本文的ADC設(shè)計(jì)有:N=12,β=1/2,f=10 MHz,因此由公式(1)和公式(2)可得,用于本文第一級MDAC的余量放大器應(yīng)滿足:開環(huán)增益需大于84 dB,單位增益帶寬需大于58 MHz。綜合考慮到輸入信號擺幅、流片工藝和功耗等要求,本文的余量放大器采用了折疊共源共柵的運(yùn)放結(jié)構(gòu),仿真結(jié)果表示,該結(jié)構(gòu)可滿足設(shè)計(jì)要求。
2.2 比較器設(shè)計(jì)
    流水線ADC由于采用了校正電路,對比較器失調(diào)電壓的要求放寬了。對于1.5 bit每級的電路,設(shè)參考電壓為1 V,則它的失調(diào)電壓放寬為125 mV。本ADC中從第1級到第10級電路都采用了動態(tài)比較器,因?yàn)槠涫д{(diào)電壓小于可校正的最大失調(diào)電壓,同時它具有較快的速度和較低的功耗。該電路的原理圖如圖4所示,它包括一個由rst信號控制的快速復(fù)位電路、信號輸入的預(yù)防大電路、鎖存比較器以及輸出反相器組成。


2.3 數(shù)字位時間對齊及數(shù)字校準(zhǔn)電路設(shè)計(jì)
    由于流水線ADC每級電路產(chǎn)生數(shù)字代碼的時間不同,因此,在進(jìn)行數(shù)字校正之前,必須先對其進(jìn)行延遲,所以在數(shù)字校正電路之前必須要有數(shù)字延遲電路。完整的輸出數(shù)字時間對齊及數(shù)字校正電路如圖5所示,其中圖的左邊為數(shù)字位時間對齊電路,圖的右邊為數(shù)字校準(zhǔn)電路。


2.4 時鐘控制電路設(shè)計(jì)
    流水線ADC對于時序要求比較高,為了確保流水線ADC正常工作,要求前后兩級不同時工作在采樣狀態(tài)和保持狀態(tài),至少需要一對兩相不交疊時鐘。文中設(shè)計(jì)的時鐘信號電路如圖6所示。相比一般的采用器件延時來設(shè)計(jì)時鐘控制電路,本文采用了在電路引入電容的方式來確定時鐘延時,盡管這樣做會在版圖上多占用了一些面積,但是其好處是設(shè)計(jì)的兩相不交疊時鐘非常穩(wěn)定,時鐘可以根據(jù)電容值選取的大小而更為合理的錯開。



3 芯片版圖
    該芯片使用0.5μm標(biāo)準(zhǔn)CMOS工藝進(jìn)行流片,版圖的設(shè)計(jì)綜合考慮了混合信號電路布局、匹配設(shè)計(jì)和抗干擾設(shè)計(jì)等。布局采用數(shù)模分離,數(shù)字電路加保護(hù)環(huán);匹配設(shè)計(jì)采用了共心對稱設(shè)計(jì)、比例單元設(shè)計(jì)和添加啞元元件等技術(shù)。芯片版圖如圖7所示,帶PAD的整體芯片面積為3.55 mm@2.9 mm,其中上部分為數(shù)字位對齊和數(shù)字校準(zhǔn)電路,中部為各級流水線,右側(cè)為時鐘產(chǎn)生電路,下部為信號輸入和其他電路。

4 成像系統(tǒng)及其成像結(jié)果
4.1 成像系統(tǒng)硬件組成
    低噪聲、高幀頻的CMOS圖像傳感器成像,除了對PCB測試板的設(shè)計(jì)要求較高外,也對測試系統(tǒng)的構(gòu)成也提出了較高的要求。本成像系統(tǒng)的電學(xué)硬件系統(tǒng)框圖如圖8所示。該電學(xué)硬件系統(tǒng)的基本工作原理是:


    1)在PCB板上用基于CPLD設(shè)計(jì)的時鐘波形來控制板上的CMOS圖像傳感器芯片和ADC芯片協(xié)同工作,并在此過程中生成幀同步信號和ADC時鐘信號交予數(shù)字采集卡作為采集卡的外觸發(fā)和外時鐘信號。
    2)在ADC芯片將CMOS圖像傳感器產(chǎn)生的模擬信號進(jìn)行模數(shù)轉(zhuǎn)換后,其數(shù)字信號經(jīng)緩沖芯片緩沖輸出至數(shù)字采集卡。
    3)數(shù)字采集卡在幀同步信號控制下進(jìn)行重復(fù)觸發(fā)采樣,在采集卡收集到一定數(shù)據(jù)后將采集到的數(shù)據(jù)傳送到主機(jī)中,然后用成像軟件進(jìn)行分析,給出動態(tài)的成像圖片。
4.2 成像系統(tǒng)軟件設(shè)計(jì)
    本測試系統(tǒng)軟件采用Labview編程,Labview是一種圖形化的編程語言的開發(fā)環(huán)境,廣泛地被工業(yè)界、學(xué)術(shù)界和研究實(shí)驗(yàn)室所接受,視為一個標(biāo)準(zhǔn)的數(shù)據(jù)采集和儀器控制軟件。
    本系統(tǒng)中利用Labview的虛擬儀器(virtual instrument)實(shí)現(xiàn)對數(shù)據(jù)采集卡的數(shù)據(jù)采樣控制、對采集到的數(shù)據(jù)進(jìn)行信號處理以及動態(tài)成像,圖9為成像軟件的界面圖,其工作模式和原理是:


    1)在控制數(shù)字采集卡的程序中,將始終和觸發(fā)設(shè)置為外時鐘采樣以及外觸發(fā)重復(fù)觸發(fā)采樣模式,以實(shí)現(xiàn)成像信號幀同步和保證采集卡采樣與ADC輸出的同步。
    2)在將采集到的數(shù)據(jù)轉(zhuǎn)化為U16數(shù)字格式數(shù)組后,對這些信號進(jìn)行灰度值處理,程序設(shè)計(jì)了兩種灰度調(diào)節(jié)模式:固定的灰度轉(zhuǎn)換和灰度自動調(diào)節(jié),此外程序還設(shè)計(jì)了可選的反色、圖像翻轉(zhuǎn)、圖像放大等功能。
    3)在數(shù)據(jù)進(jìn)行信號處理后,完成對采集數(shù)據(jù)的二維灰度值成像,這些信號處理和成像程序都置于while循環(huán)中,因此可根據(jù)延時設(shè)置成像刷新的幀頻,實(shí)現(xiàn)動態(tài)成像。
4.3 成像結(jié)果
    用本文設(shè)計(jì)的ADC對模擬輸出的CMOS圖像傳感器進(jìn)行模數(shù)轉(zhuǎn)換后,基于自主設(shè)計(jì)的成像系統(tǒng),進(jìn)行了實(shí)時成像實(shí)驗(yàn),成像結(jié)果如圖10所示,可以看出,畫面清晰,層次感分明。



5 結(jié)束語
    文中設(shè)計(jì)了一種可應(yīng)用于低噪聲CMOS圖像傳感器芯片級模數(shù)轉(zhuǎn)換的12bit、10Msps流水線ADC,并基于0.5μm標(biāo)準(zhǔn)CMOS工藝進(jìn)行了流片。最后在PCB板級電路上用該流水線型ADC完成了CMOS圖像傳感器的模數(shù)轉(zhuǎn)換,并基于Labview和數(shù)字采集卡系統(tǒng)實(shí)現(xiàn)了CMOS圖像傳感器的成
像,成像結(jié)果表明,該ADC可滿足低噪聲CMOS圖像傳感器芯片級模數(shù)轉(zhuǎn)換器的要求,下一步可將CMOS圖像傳感器和該ADC合并設(shè)計(jì)在一個芯片上進(jìn)行流片。

本站聲明: 本文章由作者或相關(guān)機(jī)構(gòu)授權(quán)發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點(diǎn),本站亦不保證或承諾內(nèi)容真實(shí)性等。需要轉(zhuǎn)載請聯(lián)系該專欄作者,如若文章內(nèi)容侵犯您的權(quán)益,請及時聯(lián)系本站刪除。
換一批
延伸閱讀

9月2日消息,不造車的華為或?qū)⒋呱龈蟮莫?dú)角獸公司,隨著阿維塔和賽力斯的入局,華為引望愈發(fā)顯得引人矚目。

關(guān)鍵字: 阿維塔 塞力斯 華為

加利福尼亞州圣克拉拉縣2024年8月30日 /美通社/ -- 數(shù)字化轉(zhuǎn)型技術(shù)解決方案公司Trianz今天宣布,該公司與Amazon Web Services (AWS)簽訂了...

關(guān)鍵字: AWS AN BSP 數(shù)字化

倫敦2024年8月29日 /美通社/ -- 英國汽車技術(shù)公司SODA.Auto推出其旗艦產(chǎn)品SODA V,這是全球首款涵蓋汽車工程師從創(chuàng)意到認(rèn)證的所有需求的工具,可用于創(chuàng)建軟件定義汽車。 SODA V工具的開發(fā)耗時1.5...

關(guān)鍵字: 汽車 人工智能 智能驅(qū)動 BSP

北京2024年8月28日 /美通社/ -- 越來越多用戶希望企業(yè)業(yè)務(wù)能7×24不間斷運(yùn)行,同時企業(yè)卻面臨越來越多業(yè)務(wù)中斷的風(fēng)險,如企業(yè)系統(tǒng)復(fù)雜性的增加,頻繁的功能更新和發(fā)布等。如何確保業(yè)務(wù)連續(xù)性,提升韌性,成...

關(guān)鍵字: 亞馬遜 解密 控制平面 BSP

8月30日消息,據(jù)媒體報道,騰訊和網(wǎng)易近期正在縮減他們對日本游戲市場的投資。

關(guān)鍵字: 騰訊 編碼器 CPU

8月28日消息,今天上午,2024中國國際大數(shù)據(jù)產(chǎn)業(yè)博覽會開幕式在貴陽舉行,華為董事、質(zhì)量流程IT總裁陶景文發(fā)表了演講。

關(guān)鍵字: 華為 12nm EDA 半導(dǎo)體

8月28日消息,在2024中國國際大數(shù)據(jù)產(chǎn)業(yè)博覽會上,華為常務(wù)董事、華為云CEO張平安發(fā)表演講稱,數(shù)字世界的話語權(quán)最終是由生態(tài)的繁榮決定的。

關(guān)鍵字: 華為 12nm 手機(jī) 衛(wèi)星通信

要點(diǎn): 有效應(yīng)對環(huán)境變化,經(jīng)營業(yè)績穩(wěn)中有升 落實(shí)提質(zhì)增效舉措,毛利潤率延續(xù)升勢 戰(zhàn)略布局成效顯著,戰(zhàn)新業(yè)務(wù)引領(lǐng)增長 以科技創(chuàng)新為引領(lǐng),提升企業(yè)核心競爭力 堅(jiān)持高質(zhì)量發(fā)展策略,塑強(qiáng)核心競爭優(yōu)勢...

關(guān)鍵字: 通信 BSP 電信運(yùn)營商 數(shù)字經(jīng)濟(jì)

北京2024年8月27日 /美通社/ -- 8月21日,由中央廣播電視總臺與中國電影電視技術(shù)學(xué)會聯(lián)合牽頭組建的NVI技術(shù)創(chuàng)新聯(lián)盟在BIRTV2024超高清全產(chǎn)業(yè)鏈發(fā)展研討會上宣布正式成立。 活動現(xiàn)場 NVI技術(shù)創(chuàng)新聯(lián)...

關(guān)鍵字: VI 傳輸協(xié)議 音頻 BSP

北京2024年8月27日 /美通社/ -- 在8月23日舉辦的2024年長三角生態(tài)綠色一體化發(fā)展示范區(qū)聯(lián)合招商會上,軟通動力信息技術(shù)(集團(tuán))股份有限公司(以下簡稱"軟通動力")與長三角投資(上海)有限...

關(guān)鍵字: BSP 信息技術(shù)
關(guān)閉
關(guān)閉