可變帶寬OTA—C連續(xù)時間低通濾波器設(shè)計
摘要:實現(xiàn)了一種全集成可變帶寬中頻寬帶低通濾波器,討論分析了跨導放大器-電容(OTA—C)連續(xù)時間型濾波器的結(jié)構(gòu)、設(shè)計和具體實現(xiàn),使用外部可編程電路對所設(shè)計濾波器帶寬進行控制,并利用ADS軟件進行電路設(shè)計和仿真驗證。仿真結(jié)果表明,該濾波器帶寬的可調(diào)范圍為1~26 MHz,阻帶抑制率大于35 dB,帶內(nèi)波紋小于0.5 dB,采用1.8 V電源,TSMC 0.18μm CMOS工藝庫仿真,功耗小于21 mW,頻響曲線接近理想狀態(tài)。
關(guān)鍵詞:Butterworth濾波器;連續(xù)時間;電流模式;跨導運算放大器
0 引言
射頻接收機質(zhì)量被認為是影響整個系統(tǒng)成本和性能的主要因素。隨著無線通信移動終端朝著小尺寸、低成本、低功耗方向發(fā)展,射頻前端系統(tǒng)中的集成濾波器設(shè)計顯得十分重要。其中,基于CMOS工藝的設(shè)計方案以其成本和功耗的優(yōu)勢,已成為有源濾波器設(shè)計選擇的主流方向。
跨導運算放大器(Operational Transconductance Amplifier)因其工作頻率高,電路結(jié)構(gòu)簡單,具有電控能力,便于集成等特點被廣泛用于有源濾波設(shè)計中。電壓功耗低的COMS跨導運算放大器,同時有熱穩(wěn)定性能好,芯片面積小,便于集成等優(yōu)點。由OTA及電容C構(gòu)成的OTA—C濾波器,僅含電容,不含電阻以及其他無源元件,有較低的功耗和較高的應(yīng)用頻率,被普遍應(yīng)用于高頻集成電路領(lǐng)域。
從總體上看,國內(nèi)的模擬濾波器研究成果較少且工藝陳舊;從帶寬上來看,低中頻結(jié)構(gòu)接收器中高帶寬的應(yīng)用比較少。本文采用CMOS工藝實現(xiàn)了一個應(yīng)用于片上全集成接收機中頻寬帶低通濾波器。
1 濾波器電路設(shè)計
梯形結(jié)構(gòu)電路的元件參數(shù)靈敏度低,實現(xiàn)時不用考慮傳輸函數(shù)零極點的配對,設(shè)計方便,在寬帶濾波器設(shè)計中有一定的優(yōu)越性。跳耦結(jié)構(gòu)電路具有較小的寄生敏感度和較大的動態(tài)范圍。本文低通濾波器設(shè)計采用信號流程圖方式實現(xiàn)梯形跳耦結(jié)構(gòu)。
本文考慮到無源LC濾波電路有優(yōu)良的靈敏度特性,并且LC電路設(shè)計理論非常成熟。所以本文采用LC梯形電路法設(shè)計電路。首先根據(jù)濾波器指標參數(shù),查表得LC梯形濾波器電路和參數(shù),后對此電路做狀態(tài)變量分析,寫出其電路電壓方程,依據(jù)狀態(tài)方程得出相應(yīng)的信號流圖,然后應(yīng)用跨導運放和電容實現(xiàn)型號流圖中的積分器,模擬狀態(tài)變量。可實現(xiàn)無源LC梯形濾波器到跨導-電容濾波器的模擬變化。查閱濾波器工具
書得出,需要采用七階Butterworth低通濾波器。本文以-3 dB帶寬為26 MHz時,50 MHz幅頻曲線以-40 dB予以說明。根據(jù)上述性能要求,查閱濾波器工具書得出,需要采用七階Butterworth低通濾波器,原型電路如圖1所示。
由圖2所示電路框圖,以電感上的電流及接地電容上的電壓為變量列出狀態(tài)方程,經(jīng)過方程變化,最后得到全電壓量狀態(tài)方程:
類似式(1)、式(2)可以得V3~V7的狀態(tài)方程。圖3電路為最終實現(xiàn)電路。模擬電阻Ⅲ采用跨導Gm,實現(xiàn)負反饋運放等效代替,電路僅由跨導運放和電容元件來實現(xiàn)七階Butterworth濾波器,其中OTA跨導值的大小可以通過其偏置電流得到精確調(diào)節(jié)。
2 跨導單元設(shè)計
線性度和帶寬是跨導運算放大器設(shè)計考慮的兩個主要方面。帶寬的大小和跨導值成正比,但增大跨導值會使芯片功耗變大,對于相同的傳輸函數(shù),增大跨導值時,電容值也需要相應(yīng)的增大,從而增大了芯片面積。同時跨導值減小時,電容值也要減小,這對版圖匹配造成影響。
本文采用經(jīng)典的交叉耦合差動式COMS跨導器,其I/V傳輸特性有理想的線性關(guān)系。圖4中,M1和M2偏置電流為I;M3和M4偏置電流為nI。電路設(shè)計中,M1~M4有相同的溝道長度L,M3,M4的溝道寬度W=nL。設(shè)Y1=i1/I,Y2=i2/I,X=Vid/Vb,則輸出電流Io=i1+i2的歸一化表達式為:
可以看出,n值增大時,β值減小,式(4)中根號內(nèi)的βX2項減小,跨導器線性度得到改善。n值越大,信號電流分量在M3,M4中所占比例越小,傳輸特性越接近理想狀態(tài)。
3 可編程電路設(shè)計
如圖5所示,OTA為跨導運算放大器,其跨導值可通過偏置電流(圖6所示電路)來調(diào)節(jié)。一般采用可變電阻完成,但傳統(tǒng)R-2R可變電阻結(jié)構(gòu)需要大量的控制開關(guān),增加了電路面積,并產(chǎn)生開關(guān)操作的功耗。本文采用一種新型微功耗硬件可編程變阻電路,如圖7所示,電路基于三態(tài)門概念,端口除高、低電平,用懸空狀態(tài)產(chǎn)生第三種狀態(tài),實現(xiàn)了27級變阻電路,總電阻表示為:
式中:表示第m個三態(tài)輸入產(chǎn)生的第n個進制狀態(tài)碼;Rm為第m個三態(tài)輸入驅(qū)動的權(quán)電阻(m=1,2,3;n=1,2)。
可編程電阻(RDAC)的輸出偏置電流:
又知跨導:
可見,在電源電壓確定的情況下,OTA的跨導值與輸入數(shù)據(jù)Rx成平方根倒數(shù)關(guān)系,跨導值隨著輸入數(shù)據(jù)的增大而減小。通過改寫輸入數(shù)據(jù)RDAC的值,即可實現(xiàn)26種(全零狀態(tài)禁用)變化電阻,達到改變偏置電流,產(chǎn)生跨導值的變化,最終實現(xiàn)濾波器帶寬的調(diào)節(jié)。
4 仿真結(jié)果
上述電路,采用1.8 V電源,TSMC 0.18μmCMOS工藝庫仿真。圖8為該濾波器-3 dB帶寬26 MHz時仿真結(jié)果,該濾波器50 MHz帶阻抑制為-40.49 dB,帶內(nèi)波紋小于0.5 dB,功耗約為21 mW,滿足設(shè)計要求。圖9為濾波器帶寬調(diào)節(jié)為14 MHz的頻響曲線。
5 結(jié)語
設(shè)計中,采用跨導運算放大器實現(xiàn)了一種可變帶寬低通濾波器,最高帶寬為26 MHz,阻帶抑制率大于35 dB,帶內(nèi)波紋小于0.5 dB,在低中頻結(jié)構(gòu)接收器中,該頻率相對較高。同時濾波器帶寬可由外部可編程電路調(diào)節(jié)變化,與普通模擬濾波器電路相比,本文設(shè)計電路具有電路簡單,易于高集成,便于后期維護等優(yōu)點,是OTA電路設(shè)計的未來發(fā)展趨勢,有著廣泛的應(yīng)用前景。