當前位置:首頁 > 通信技術(shù) > 通信技術(shù)
[導讀]引言  在21世紀,移動通信技術(shù)和市場飛速發(fā)展,在新技術(shù)、市場需求的共同作用下,出現(xiàn)了第三代移動通信系統(tǒng)-3G,3G中采用碼分多址(CDMA)技術(shù)來處理多徑問題,以獲得多徑分集增益。  然而在該體制中,多徑干擾和

引言

  在21世紀,移動通信技術(shù)和市場飛速發(fā)展,在新技術(shù)、市場需求的共同作用下,出現(xiàn)了第三代移動通信系統(tǒng)-3G,3G中采用碼分多址(CDMA)技術(shù)來處理多徑問題,以獲得多徑分集增益。

  然而在該體制中,多徑干擾和多用戶干擾始終并存,在用戶數(shù)較多的情況下,實現(xiàn)多用戶檢測是非常困難的。并且CDMA本身是一個自擾系統(tǒng),所有的移動用戶都占用相同的帶寬和頻率,所以在系統(tǒng)容量有限的情況下,用戶數(shù)越多就越難達到較高的通信速率,因此3G系統(tǒng)所提供的2Mb/s帶寬是共享式的,當多個用戶同時使用時,平均每個用戶可使用的帶寬遠低于2Mb/s,而這樣的帶寬并不能滿足移動用戶對一些多媒體業(yè)務(wù)的需求。

  不同領(lǐng)域技術(shù)的綜合與協(xié)作,伴隨著全新無線寬帶技術(shù)的智能化,以及定位于用戶的新業(yè)務(wù),這一切必將繁衍出新一代移動通信系統(tǒng)4G。相比于3G,4G可以提供高達100Mb/s的數(shù)據(jù)傳輸速率,支持從語音到數(shù)據(jù)的多媒體業(yè)務(wù),并且能達到更高的頻譜利用率以及更低的成本。

  為了達到以上目標,4G中必須采用其他相對于3G中的CDMA這樣的突破性技術(shù),尤其是要研究在移動環(huán)境和有限頻譜資源條件下,如何穩(wěn)定、可靠、高效地支持高數(shù)據(jù)速率的數(shù)據(jù)傳輸。因此,在4G移動通信系統(tǒng)中采用了OFDM技術(shù)作為其核心技術(shù),它可以在有效提高傳輸速率的同時,增加系統(tǒng)容量、避免高速引起的各種干擾,并具有良好的抗噪聲性能、抗多徑信道干擾和頻譜利用率高等優(yōu)點。

  本文將對OFDM的基本原理以及其調(diào)制/解調(diào)技術(shù)的實現(xiàn)和循環(huán)前綴技術(shù)進行介紹,并在三個主要方面將OFDM與CDMA技術(shù)進行對比分析。

  2 OFDM技術(shù)分析

  2.1 OFDM基本原理

  正交頻分復(fù)用的基本原理可以概述如下:把一路高速的數(shù)據(jù)流通過串并變換,分配到傳輸速率相對較低的若干子信道中進行傳輸。在頻域內(nèi)將信道劃分為若干相互正交的子信道,每個子信道均擁有自己的載波分別進行調(diào)制,信號通過各個子信道獨立地進行傳輸。

  由于多徑傳播效應(yīng)會造成接收信號相互重疊,產(chǎn)生信號波形間的相互干擾,形成符號間干擾,如果每個子信道的帶寬被劃分的足夠窄,每個子信道的頻率特性就可近似看作是平坦的。如圖1所示。

 

  因此,每個子信道都可看作無符號間干擾的理想信道。這樣,在接收端不需要使用復(fù)雜的信道均衡技術(shù)即可對接收信號可靠地進行解調(diào)。在OFDM系統(tǒng)中,通過在OFDM符號之間插入保護間隔來保證頻域子信道之間的正交性,以及消除由于多徑傳播效應(yīng)所引起的OFDM符號間的干擾。因此,OFDM特別適合于在存在多徑衰落的移動無線信道中高速傳輸數(shù)據(jù)。OFDM的原理框圖如2所示。

  如圖2所示,原始高速率比特流經(jīng)過串/并變換后變?yōu)槿舾山M低速率的比特流d(M),這些d(M)經(jīng)過調(diào)制后變成了對應(yīng)的頻域信號,然后經(jīng)過加循環(huán)前綴、D/A變換,通過RF發(fā)送出去;經(jīng)過無線信道的傳播后,在接收機以與發(fā)送機相反的順序接收解調(diào)下來,從而得到原發(fā)送信號。

 

  圖2中d(M)為第M個調(diào)制碼元;圖中的OFDM已調(diào)制信號D(t)的表達式為:

 

  式(1)中:T為碼元周期加保護時間;fn為各子載波的頻率,可表示為:

 

  式(2)中:f0為最低子載波頻率;Ts為碼元周期。

  在發(fā)射端,發(fā)射數(shù)據(jù)經(jīng)過常規(guī)QAM調(diào)制形成基帶信號。然后經(jīng)過串并變換成M個子信號,這些子信號再調(diào)制相互正交的M個子載波,其中/正交0表示的是載波頻率間精確的數(shù)學關(guān)系,其數(shù)學表示為QT0fx(t)fy(t)dt=0,最后相加成OFDM發(fā)射信號。實際的輸出信號可表示為:

 

  在接收端,輸入信號分成M個支路,分別用M個子載波混頻和積分,恢復(fù)出子信號,再經(jīng)過并串變換和常規(guī)QAM解調(diào)就可以恢復(fù)出數(shù)據(jù)。由于子載波的正交性,混頻和積分電路可以有效地分離各子載波信道,如下式所示:

 

 

  式中dc(m)為接收端第m支路子信號。在整個OFDM的工作流程中OFDM與其他技術(shù)的主要區(qū)別在于其采用的調(diào)制/解調(diào)技術(shù)以及循環(huán)前綴的加入這兩個環(huán)節(jié),下面將對其進行較為詳細的分析。

  2.2 OFDM調(diào)制/解調(diào)技術(shù)的實現(xiàn)

  OFDM系統(tǒng)的調(diào)制和解調(diào)可以采用離散逆傅立葉變換(IDFT)以及離散傅立葉變換(DFT)來實現(xiàn),在實際應(yīng)用中,可以采用更加方便快捷的逆快速傅立葉變換(IFFT)和快速傅立葉變換(FFT)技術(shù)來實現(xiàn)調(diào)制和解調(diào),這是OFDM的技術(shù)優(yōu)勢之一。

  首先不考慮保護時間,將式(2)代入式(1)可得到如下等式:

 

  式中ts為串并變換前的信號周期,顯然,ts=1MTs;令X(t)為復(fù)等效基帶信號:

 

  對X(t)進行抽樣,抽樣頻率為1ts,即tk=kts,則有:

 

  由上式可知X(t)=X(tk)為d(n)的傅立葉逆變換。同樣在接收端可以采用相反的方法,即離散傅立葉變換得到:

 

  由上面的分析可以看出OFDM的調(diào)制可以由IDFT實現(xiàn),而解調(diào)可由DFT實現(xiàn)。當系統(tǒng)中的子載波數(shù)很大時,可以采用快速傅立葉變換(FFT/IF2FT)來實現(xiàn)調(diào)制和解調(diào),以顯著地降低運算復(fù)雜度,從而在數(shù)字信號處理器DSP上比較容易實現(xiàn),因此能夠達到簡化4G通信系統(tǒng)中硬件實現(xiàn)的復(fù)雜度并減少設(shè)備成本的效果,現(xiàn)存的還有諸如矢量變換方式、基于小波變換的離散小波多音頻調(diào)制方式等,但這些方式與OFDM相比,實現(xiàn)復(fù)雜度相對較高,因而一般不會用于4G通信系統(tǒng)。2.3 循環(huán)前綴基本原理

  在OFDM系統(tǒng)中,為了最大限度地消除符號間干擾,在每個OFDM符號之間要插入保護間隔,該保護間隔長度Tg一般要大于無線信道的最大時延擴展,這樣一個符號的多徑分量就不會對下一個符號造成干擾。

  在這段保護間隔內(nèi),可以不插入任何信號,即保護間隔是一段空閑的傳輸時段。然而在這種情況中,由于多徑傳播的影響,會產(chǎn)生信道間干擾,即子載波之間的正交性遭到破壞,使不同的子載波之間產(chǎn)生干擾。為了消除由于多徑傳播造成的信道間干擾,將原來寬度為T的OFDM符號進行周期擴展,用擴展信號來填充保護間隔,如下圖3所示:

 

  將保護間隔內(nèi)的信號稱為循環(huán)前綴(Cyclicprefix)。由圖3可以看出,循環(huán)前綴中的信號與OFDM符號尾部寬度為Tg的部分相同。在實際系統(tǒng)中,OFDM符號在送入信道之前,首先要加入循環(huán)前綴,然后送入信道進行傳送。接收端首先將接收符號開始的寬度為Tg的部分丟棄,將剩余的寬度為T的部分進行傅立葉變換,然后進行解調(diào)。

  通過在OFDM符號內(nèi)加入循環(huán)前綴可以保證在FFT周期內(nèi),OFDM符號的延時副本內(nèi)所包含的波形的周期個數(shù)是整數(shù)。這樣,時延小于保護間隔Tg的時延信號就不會在解調(diào)的過程中產(chǎn)生信道間干擾。

  通過對上述兩個技術(shù)環(huán)節(jié)的分析可以看出,OFDM的調(diào)制解調(diào)技術(shù)可以降低硬件實現(xiàn)的復(fù)雜度;循環(huán)前綴技術(shù)可以有效消除由于多徑傳播造成的信道間干擾影響。這些對于4G通信系統(tǒng)降低設(shè)備成本以及提高信號質(zhì)量都是至關(guān)重要的。

  3 OFDM與CDMA技術(shù)的比較分析

  作為4G中的核心技術(shù),4G通信系統(tǒng)在頻譜利用率、高速率多媒體服務(wù)的支持、調(diào)制方式的靈活性及抗多徑信道干擾等方面優(yōu)于3G通信系統(tǒng)。

  這主要緣于4G采用的OFDM技術(shù)與3G中采用的CDMA技術(shù)在其技術(shù)特點上存在著差異。下面就從抗多徑干擾、調(diào)制技術(shù)以及峰均功率比這三個方面對OFDM與CDMA的技術(shù)特點進行對比分析。

  3.1 抗多徑干擾

  無線信道中,由于信道傳輸特性不理想容易產(chǎn)生多徑傳播效應(yīng),多徑傳播效應(yīng)會造成接收信號相互重疊,產(chǎn)生信號波形間的相互干擾,使接收端判斷錯誤,從而嚴重地影響信號傳輸?shù)馁|(zhì)量,易造成符號間干擾。

  CDMA系統(tǒng)中,為了減小多徑干擾,CDMA接收機采用了分離多徑(RAKE)分集接收技術(shù)來區(qū)分和綁定多路信號能量。為了減少干擾源,RAKE接收機提供一些分集增益。然而由于多路信號能量不相等,試驗證明,如果路徑數(shù)超過7或8條,這種信號能量的分散將使得信道估計精確度降低,RAKE的接收性能下降就會很快。

  OFDM將高速率的信號轉(zhuǎn)換成低速率的信號,從而擴展了信號的周期,減弱了多徑傳播的影響,同時通過加循環(huán)前綴的方式,使各子載波之間相互正交,減少了ISI和各信道間的干擾,在4G的多媒體通信中能夠提高通信質(zhì)量。

  3.2 調(diào)制技術(shù)

  CDMA系統(tǒng)中,下行鏈路采用了多載波調(diào)制技術(shù),但每條鏈路上的調(diào)制方式相同,上行鏈路不支持多載波調(diào)制,這使得CDMA系統(tǒng)喪失了一定的靈活性;同時,由于此鏈路的非正交性,使得不同調(diào)制方式的用戶會產(chǎn)生很大的噪聲干擾。

  OFDM的上、下行鏈路都采用多載波調(diào)制技術(shù),并且每條鏈路中的調(diào)制方式也可以根據(jù)實際信道的狀況/自適應(yīng)調(diào)制0,從而更加靈活。在信噪比(SNR)滿足一定要求的前提下,對質(zhì)量好的信道可以采用高階調(diào)制技術(shù)(16QAM等);在信道質(zhì)量差的情況下,可以采用低階調(diào)制技術(shù)(QPSK等),從而使系統(tǒng)可以在頻譜利用率和誤碼率之間得到最佳配置。

  3.3 峰均功率比

  峰均功率比就是峰值與均值的功率比,定義為信號的最大峰值功率和同一信號平均功率之比,簡稱峰均比。

  在實際應(yīng)用中這是一個不容忽視的重要因素。因為較高的PAPR將導致發(fā)送端對功率放大器的線性要求也較高,這意味著要設(shè)備的功耗將增大,因此就要提供額外功率、電池備份和擴大設(shè)備的尺寸,從而導致設(shè)備成本的提高。

  CDMA系統(tǒng)的PAPR一般在5-11dB,并會隨著數(shù)據(jù)速率和使用碼數(shù)的增加而增加。OFDM信號是由多個獨立的經(jīng)過調(diào)制的正交子載波信號疊加而成,這種合成信號有可能產(chǎn)生比較大的峰值功率,從而帶來較大的PAPR。目前,用來控制OFDM的PAPR的技術(shù)主要有以下兩種:

  (1)信號失真技術(shù)

  采用修剪技術(shù)、峰值窗口去除技術(shù)或峰值刪除技術(shù)使峰值振幅值簡單地線性去除。

 ?。?)擾碼技術(shù)

  采用擾碼技術(shù),使生成的OFDM的互相關(guān)性盡量為0,從而使OFDM的PAPR減少。具體的實現(xiàn)技術(shù)包括:編碼、局部擾碼、部分發(fā)送序列。

  綜上所述,在抗多徑干擾、調(diào)制技術(shù)方面,OFDM的性能優(yōu)于CDMA技術(shù),并且可以通過其他技術(shù)來降低其峰均功率比。與第三代移動通信系統(tǒng)相比,OFDM以其更加靈活的調(diào)制方式、更強的抗多徑干擾的能力以及更高的頻譜利用率,全面提高了4G通信系統(tǒng)的性能,改善了4G移動業(yè)務(wù)的服務(wù)質(zhì)量,并且大幅度降低了4G通信系統(tǒng)的成本,因而成為4G中不可或缺的核心技術(shù)。

  4 結(jié)語

  OFDM通過頻域劃分互相正交的子信道使其頻譜效率與傳統(tǒng)的頻分復(fù)用技術(shù)相比有顯著提高,同時由于子信道可以劃分得很窄因而每一個子信道都很平坦,避免了使用復(fù)雜的均衡器。通過使用循環(huán)前綴,一方面消除了OFDM符號間干擾,另一方面保證了子載波之間的正交性,這對于頻率選擇性衰落信道克服多徑干擾尤其有效。但是,OFDM還不是盡善盡美并存在許多問題需要解決。日后在4G的深入研究中應(yīng)考慮將OFDM與其他技術(shù)進行結(jié)合(OFDM-CDMA等),從而達到更好的通信質(zhì)量。

 

本站聲明: 本文章由作者或相關(guān)機構(gòu)授權(quán)發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點,本站亦不保證或承諾內(nèi)容真實性等。需要轉(zhuǎn)載請聯(lián)系該專欄作者,如若文章內(nèi)容侵犯您的權(quán)益,請及時聯(lián)系本站刪除。
換一批
延伸閱讀

9月2日消息,不造車的華為或?qū)⒋呱龈蟮莫毥谦F公司,隨著阿維塔和賽力斯的入局,華為引望愈發(fā)顯得引人矚目。

關(guān)鍵字: 阿維塔 塞力斯 華為

加利福尼亞州圣克拉拉縣2024年8月30日 /美通社/ -- 數(shù)字化轉(zhuǎn)型技術(shù)解決方案公司Trianz今天宣布,該公司與Amazon Web Services (AWS)簽訂了...

關(guān)鍵字: AWS AN BSP 數(shù)字化

倫敦2024年8月29日 /美通社/ -- 英國汽車技術(shù)公司SODA.Auto推出其旗艦產(chǎn)品SODA V,這是全球首款涵蓋汽車工程師從創(chuàng)意到認證的所有需求的工具,可用于創(chuàng)建軟件定義汽車。 SODA V工具的開發(fā)耗時1.5...

關(guān)鍵字: 汽車 人工智能 智能驅(qū)動 BSP

北京2024年8月28日 /美通社/ -- 越來越多用戶希望企業(yè)業(yè)務(wù)能7×24不間斷運行,同時企業(yè)卻面臨越來越多業(yè)務(wù)中斷的風險,如企業(yè)系統(tǒng)復(fù)雜性的增加,頻繁的功能更新和發(fā)布等。如何確保業(yè)務(wù)連續(xù)性,提升韌性,成...

關(guān)鍵字: 亞馬遜 解密 控制平面 BSP

8月30日消息,據(jù)媒體報道,騰訊和網(wǎng)易近期正在縮減他們對日本游戲市場的投資。

關(guān)鍵字: 騰訊 編碼器 CPU

8月28日消息,今天上午,2024中國國際大數(shù)據(jù)產(chǎn)業(yè)博覽會開幕式在貴陽舉行,華為董事、質(zhì)量流程IT總裁陶景文發(fā)表了演講。

關(guān)鍵字: 華為 12nm EDA 半導體

8月28日消息,在2024中國國際大數(shù)據(jù)產(chǎn)業(yè)博覽會上,華為常務(wù)董事、華為云CEO張平安發(fā)表演講稱,數(shù)字世界的話語權(quán)最終是由生態(tài)的繁榮決定的。

關(guān)鍵字: 華為 12nm 手機 衛(wèi)星通信

要點: 有效應(yīng)對環(huán)境變化,經(jīng)營業(yè)績穩(wěn)中有升 落實提質(zhì)增效舉措,毛利潤率延續(xù)升勢 戰(zhàn)略布局成效顯著,戰(zhàn)新業(yè)務(wù)引領(lǐng)增長 以科技創(chuàng)新為引領(lǐng),提升企業(yè)核心競爭力 堅持高質(zhì)量發(fā)展策略,塑強核心競爭優(yōu)勢...

關(guān)鍵字: 通信 BSP 電信運營商 數(shù)字經(jīng)濟

北京2024年8月27日 /美通社/ -- 8月21日,由中央廣播電視總臺與中國電影電視技術(shù)學會聯(lián)合牽頭組建的NVI技術(shù)創(chuàng)新聯(lián)盟在BIRTV2024超高清全產(chǎn)業(yè)鏈發(fā)展研討會上宣布正式成立。 活動現(xiàn)場 NVI技術(shù)創(chuàng)新聯(lián)...

關(guān)鍵字: VI 傳輸協(xié)議 音頻 BSP

北京2024年8月27日 /美通社/ -- 在8月23日舉辦的2024年長三角生態(tài)綠色一體化發(fā)展示范區(qū)聯(lián)合招商會上,軟通動力信息技術(shù)(集團)股份有限公司(以下簡稱"軟通動力")與長三角投資(上海)有限...

關(guān)鍵字: BSP 信息技術(shù)
關(guān)閉
關(guān)閉