當(dāng)前位置:首頁 > 測試測量 > 測試測量
[導(dǎo)讀]在通信領(lǐng)域,隨著中頻(IF)頻率越來越高,了解輸入阻抗如何隨頻率而變化變得日益重要。本文解釋了為什么ADC輸入阻抗隨頻率而變化,以及為什么這是個(gè)電路設(shè)計(jì)難題;然后比較了確定輸入阻抗的兩種方法:利用網(wǎng)絡(luò)分析儀

在通信領(lǐng)域,隨著中頻(IF)頻率越來越高,了解輸入阻抗如何隨頻率而變化變得日益重要。本文解釋了為什么ADC輸入阻抗隨頻率而變化,以及為什么這是個(gè)電路設(shè)計(jì)難題;然后比較了確定輸入阻抗的兩種方法:利用網(wǎng)絡(luò)分析儀測量法和利用數(shù)學(xué)分析方法計(jì)算法。本文還介紹了正確使用網(wǎng)絡(luò)分析儀的過程,并且提供了一個(gè)數(shù)學(xué)模型,其計(jì)算結(jié)果與實(shí)際測量結(jié)果非常接近。

利用高速ADC進(jìn)行設(shè)計(jì)時(shí),常常要考慮這樣的問題:“ADC的模擬輸入阻抗與頻率有何關(guān)系?”數(shù)據(jù)手冊只給出對(duì)應(yīng)一個(gè)頻點(diǎn)的阻抗。如果要處理100 MHz以上的IF,那輸入阻抗是多少?輸入阻抗是隨頻率變化還是保持不變?

考慮在信號(hào)鏈中使用任何新器件時(shí),輸入/輸出阻抗通常是讓所需的信號(hào)鏈各模塊配合得當(dāng)?shù)闹匾?guī)范。對(duì)于高速轉(zhuǎn)換器,這一規(guī)范已變得非常重要,因?yàn)樵O(shè)計(jì)(特別是通信基礎(chǔ)設(shè)施中的那些設(shè)計(jì))已將IF從20MHz基帶提高到200MHz以上(如果采樣速率為122.88MHz,則處在第4奈奎斯特區(qū)),并且還在不斷升高。

2000年以前,一般“認(rèn)為”在基帶頻率,其阻抗很高,達(dá)數(shù)千歐姆,現(xiàn)在仍然如此。然而,隨著設(shè)計(jì)的IF頻率越來越高,時(shí)不時(shí)會(huì)冒出實(shí)際阻抗是多少、以及它是否隨頻率而變化等問題。通常,數(shù)據(jù)手冊將差分輸入阻抗規(guī)定為一個(gè)簡單的RC并聯(lián)組合。然而,并不是所有ADC數(shù)據(jù)手冊都闡明了它的真實(shí)含義。

“有緩沖”或“無緩沖”

考慮輸入阻抗的影響時(shí),設(shè)計(jì)人員一般可以在兩類高速ADC之間選擇:有緩沖和無緩沖(即采用開關(guān)電容)。雖然有許多不同的轉(zhuǎn)換器拓?fù)浣Y(jié)構(gòu)可供選擇,但本文討論的應(yīng)用僅涉及流水線架構(gòu)。

常用的CMOS開關(guān)電容ADC無內(nèi)部輸入緩沖器。因此,其功耗遠(yuǎn)低于緩沖型ADC。外部前端直接連接到ADC的內(nèi)部開關(guān)電容采樣保持(SHA)電路,這帶來兩個(gè)問題。

第一,當(dāng)ADC在采樣與保持兩種模式之間切換時(shí),其輸入阻抗會(huì)隨頻率和模式而變化。第二,來自內(nèi)部采樣電容和網(wǎng)絡(luò)的電荷注入會(huì)將少量信號(hào)(與高頻成分混合,如圖1所示)反射回前端電路和輸入信號(hào),這可能導(dǎo)致與轉(zhuǎn)換器模擬輸入端相連的元件(有源或無源)發(fā)生建立(settling)錯(cuò)誤。

 

圖1:此圖反映了內(nèi)部采樣電容的時(shí)域電荷注入(單端)與頻域電荷注入的對(duì)比關(guān)系。

通常,當(dāng)頻率較低時(shí)(《100MHz),這類轉(zhuǎn)換器的輸入阻抗非常高(數(shù)千Ω左右);當(dāng)頻率高于200MHz時(shí),差分輸入阻抗跌落至大約200Ω。輸入阻抗的虛部(即容性部分)也是如此,低頻時(shí)的容抗相當(dāng)高,高頻時(shí)逐漸變小到大約1-2pF。“匹配”這種輸入結(jié)構(gòu)是個(gè)極具挑戰(zhàn)性的設(shè)計(jì)問題,特別是當(dāng)頻率高于100MHz時(shí)。

輸入端采用差分結(jié)構(gòu)很重要,尤其是對(duì)于頻域設(shè)計(jì)。差分前端設(shè)計(jì)能夠更好地對(duì)電荷注入進(jìn)行共模抑制,并且有助于設(shè)計(jì)。

采用帶輸入緩沖的轉(zhuǎn)換器更便于設(shè)計(jì)。但不利的一面是這類轉(zhuǎn)換器的功耗更高,因?yàn)榫彌_器必須設(shè)計(jì)得具有高線性和低噪聲特性。輸入阻抗通常規(guī)定為固定的差分R||C阻抗。它由一個(gè)晶體管級(jí)進(jìn)行緩沖,該級(jí)以低阻抗驅(qū)動(dòng)轉(zhuǎn)換過程,因此顯著減小了電荷注入尖峰和開關(guān)瞬變。

與開關(guān)電容型ADC不同,輸入終端在轉(zhuǎn)換過程的采樣和保持階段幾乎無變化。因此,相比于無緩沖型ADC,其驅(qū)動(dòng)電路的設(shè)計(jì)容易得多。圖2為緩沖型和無緩沖型ADC的內(nèi)部采樣保持電路的結(jié)構(gòu)簡圖。

 

圖2:所示是無緩沖(a)和有緩沖(b)高速流水線ADC采樣和保持電路的比較。

轉(zhuǎn)換器的選擇可能很難,但如今的大部分設(shè)計(jì)都力求更低功耗,因此設(shè)計(jì)人員往往采用無緩沖型轉(zhuǎn)換器。如果線性指標(biāo)比功耗更重要,則通常選用緩沖型轉(zhuǎn)換器。應(yīng)當(dāng)注意,無論選擇何種轉(zhuǎn)換器,應(yīng)用的頻率越高,則前端設(shè)計(jì)就越困難。單靠選擇緩沖型轉(zhuǎn)換器并不能解決所有問題。不過在某些情況下,它可能會(huì)降低設(shè)計(jì)復(fù)雜性。

轉(zhuǎn)換器輸入阻抗計(jì)算:測量方法

表面上,這似乎非常棘手,但其實(shí)有多種方法可以測量轉(zhuǎn)換器的阻抗。技巧在于利用網(wǎng)絡(luò)分析儀來完成大部分瑣碎工作,不過這種設(shè)備可能價(jià)格不菲。其優(yōu)點(diǎn)是,當(dāng)今的網(wǎng)絡(luò)分析儀能夠?qū)崿F(xiàn)許多功能,像跡線計(jì)算和去嵌入等;對(duì)于阻抗轉(zhuǎn)換等任務(wù),它可以直接給出答案,而不需要使用外部軟件。

測量轉(zhuǎn)換器的阻抗需要兩塊電路板、一臺(tái)網(wǎng)絡(luò)分析儀和一點(diǎn)“入侵”知識(shí)。第一塊板焊接有ADC/DUT(待測器件),還焊接了其它元件以提供偏置和時(shí)鐘(圖3a)。第二塊高速ADC評(píng)估板去除了前端電路,僅留連至轉(zhuǎn)換器模擬輸入引腳的走線(圖3b)。

 

圖3: ADC的阻抗測量需要一塊ADC評(píng)估板(a)且要將(a)中的前端去掉以用于測量(b)。

第二塊板除去了拆掉的前端電路的任何走線寄生效應(yīng)。為此,必須使用與圖3b所示一模一樣但沒焊裝器件的電路裸板(圖4a)。然后切割該裸板,只剩下前端電路走線進(jìn)入ADC的模擬輸入引腳的那部分(圖4b)。

 

圖4:為去掉被剝離的前端電路的導(dǎo)線寄生效應(yīng),應(yīng)使用圖3b所示的未焊件裸板(a)。該板的一個(gè)剪切版只允許前端電路導(dǎo)線連接到ADC的模擬輸入引腳(b)。

需要在轉(zhuǎn)換器的引腳處安裝一個(gè)連接器(通常會(huì)有足夠的銅來完成這一任務(wù))。在此階段可發(fā)揮創(chuàng)造性以保證該連接器的牢固連接。通常,ADC的裸露焊盤(epad)可用于實(shí)現(xiàn)轉(zhuǎn)換器本身到地的連接。假設(shè)前端電路的兩條差分走線相等且對(duì)稱,那么只需要使用其中的一條走線。該板用于實(shí)現(xiàn)“通過”測量,最后將從焊有器件電路板的測量結(jié)果中減去前一測量結(jié)果。

下一步是對(duì)剪切后的小裸板(圖4b所示的第二塊板)實(shí)施“通過”測量,以測量S21(圖5)。這個(gè)文件(應(yīng)以touchstone格式或?.S2P文件形式保存)將成為去嵌入文件,用以從焊有器件的板中剔除所有走線寄生效應(yīng)。

 

圖5:圖4b所示剪切板的去掉前端電路后的導(dǎo)線阻抗。

然后只需以差分配置將焊件板(圖3b所示的第一塊板)連接到網(wǎng)絡(luò)分析儀。應(yīng)為該板提供電源和時(shí)鐘,以確保能捕捉到測量過程中轉(zhuǎn)換器內(nèi)部前端設(shè)計(jì)的任何寄生變化。

焊件板“上電”后,轉(zhuǎn)換器看起來像是在典型應(yīng)用中。在此測量中,將先前在切割裸板的各端口(各模擬輸入走線)上測得的板寄生效應(yīng)(圖6)去掉。最終將從當(dāng)前ADC測量結(jié)果中減去板寄生效應(yīng),僅在圖中顯示封裝和內(nèi)部前端阻抗(圖7)。

 

圖6:這條曲線說明了沒去掉前端電路寄生效應(yīng)的ADC阻抗。

 

圖7: 這條曲線說明了去掉前端電路寄生效應(yīng)的ADC的阻抗。

 轉(zhuǎn)換器輸入阻抗計(jì)算:數(shù)學(xué)方法

現(xiàn)在我們通過數(shù)學(xué)方法分析一下,看花在實(shí)驗(yàn)室測量上的時(shí)間是否值得??蓪?duì)任何轉(zhuǎn)換器的內(nèi)部輸入阻抗實(shí)施建模(圖8)。該網(wǎng)絡(luò)是表述跟蹤模式下(即采樣時(shí))輸入網(wǎng)絡(luò)交流性能的一個(gè)良好模型。

 

圖8:跟蹤模式(實(shí)施采樣時(shí))下,ADC內(nèi)部輸入網(wǎng)絡(luò)的AC性能。

ADC internal input Z:ADC內(nèi)部輸入阻抗

通常,任何數(shù)據(jù)手冊都會(huì)給出某種形式的靜態(tài)差分輸入阻抗、以及通過仿真獲得的R||C值。本文所述方式所用的模型非常簡單,目的是求出高度近似值并簡化數(shù)學(xué)計(jì)算。否則,如果等效阻抗模型還包括采樣時(shí)鐘速率和占空比,那么很小的阻抗變化就可能使數(shù)學(xué)計(jì)算變得異常困難。

還應(yīng)注意,這些值是ADC內(nèi)部電路在跟蹤模式下采樣過程(即對(duì)信號(hào)進(jìn)行實(shí)際采樣)中的反映。在保持模式下,采樣開關(guān)斷開,輸入前端電路與內(nèi)部采樣處理或緩沖器隔離。

推導(dǎo)該簡單模型(圖8)并求解實(shí)部和虛部:

Z0 = R, Z1 = 1/s • C, s = j • 2 • π • f, f = frequency

ZTOTAL = 1/(1/Z0 + 1/Z1) = 1/(1/R + s • C) = 1/((1 + s • R • C)/R)) = R/(1 + s • R • C)

代換s并乘以共軛復(fù)數(shù):

ZTOTAL = R/(1 + j • 2 • π • f • R • C) = R/(1 + j • 2 • π • f • R • C) • ((1 – j • 2 • π • f • R • C)/(1 – j • 2 • π • f • R • C)) = (R –j • 2 • π • f • R2 • C)/(1 + (2 • π • f • R • C)2)

求出“實(shí)部”(Real)和“虛部”(Imag):

ZTOTAL = Real + j • Imag = R/(1 + (2 • π • f • R • C)2) + j • (–2 • π • f • R2 • C)/(1 + 2 • π • f • R • C)2)

Real = R/(1 + (2 • π • f • R • C)2) Imag = (–2 • π • f • R2 • C)/(1 + (2 • π • f • R • C)2)

這一數(shù)學(xué)模型與跟蹤模式下的交流仿真非常吻合(圖9和圖10)。這個(gè)簡單模型的主要誤差源是阻抗在高頻時(shí)的建立水平。注意,這些值一般是通過一系列仿真得出的,相當(dāng)準(zhǔn)確。

 

圖9:顯示的是轉(zhuǎn)換器輸入阻抗曲線的“實(shí)部”部分,它比較了經(jīng)測量、數(shù)學(xué)和仿真方法得到的結(jié)果。

 

圖10:顯示的是轉(zhuǎn)換器輸入阻抗曲線的“虛部”部分,它比較了經(jīng)測量、數(shù)學(xué)和仿真方法得到的結(jié)果。

現(xiàn)在討論圖9和圖10所示的測量結(jié)果。所有三條曲線并不完全重合,但很接近,這是因?yàn)槟承y量誤差總是存在的,而且仿真可能并未考慮到轉(zhuǎn)換器的所有封裝寄生效應(yīng)。因此,一定程度的不一致是正常的。盡管如此,這些曲線在形狀和輪廓方面都很相似,相當(dāng)近似地給出了轉(zhuǎn)換器的阻抗特性。

注意,網(wǎng)絡(luò)分析儀只能在其特征阻抗標(biāo)準(zhǔn)乘/除10倍的范圍內(nèi)提供可信的測量結(jié)果。如果網(wǎng)絡(luò)分析儀的特征阻抗為50Ω,那么只能在5Ω到500Ω的范圍內(nèi)實(shí)現(xiàn)令人滿意的測量。這也是數(shù)據(jù)手冊中更愿意列出簡單R||C值的原因之一。

ADC輸入阻抗總結(jié)

了解轉(zhuǎn)換器阻抗是信號(hào)鏈設(shè)計(jì)的一個(gè)重要內(nèi)容??傊舴钦嬲枰?,為什么要浪費(fèi)大筆資金去購買昂貴的測試設(shè)備,或者費(fèi)力去測量阻抗?不如使用數(shù)據(jù)手冊提供的RC并聯(lián)組合阻抗并稍加簡單計(jì)算,這種獲取轉(zhuǎn)換器阻抗曲線的方法更快捷、更輕松。

還應(yīng)注意,工藝電阻容差可高達(dá)±20%。即使費(fèi)盡辛苦去測量任何器件的輸入或輸出阻抗,也只能獲取一個(gè)數(shù)據(jù)點(diǎn)(當(dāng)然,除非測量多個(gè)批次的許多器件隨溫度和電源電壓變化的情況)。請使用數(shù)據(jù)手冊中的仿真R||C值,它提供了關(guān)于特征阻抗與頻率關(guān)系的足夠信息,由此可以設(shè)計(jì)出正常工作的信號(hào)鏈。

本站聲明: 本文章由作者或相關(guān)機(jī)構(gòu)授權(quán)發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點(diǎn),本站亦不保證或承諾內(nèi)容真實(shí)性等。需要轉(zhuǎn)載請聯(lián)系該專欄作者,如若文章內(nèi)容侵犯您的權(quán)益,請及時(shí)聯(lián)系本站刪除。
換一批
延伸閱讀

9月2日消息,不造車的華為或?qū)⒋呱龈蟮莫?dú)角獸公司,隨著阿維塔和賽力斯的入局,華為引望愈發(fā)顯得引人矚目。

關(guān)鍵字: 阿維塔 塞力斯 華為

加利福尼亞州圣克拉拉縣2024年8月30日 /美通社/ -- 數(shù)字化轉(zhuǎn)型技術(shù)解決方案公司Trianz今天宣布,該公司與Amazon Web Services (AWS)簽訂了...

關(guān)鍵字: AWS AN BSP 數(shù)字化

倫敦2024年8月29日 /美通社/ -- 英國汽車技術(shù)公司SODA.Auto推出其旗艦產(chǎn)品SODA V,這是全球首款涵蓋汽車工程師從創(chuàng)意到認(rèn)證的所有需求的工具,可用于創(chuàng)建軟件定義汽車。 SODA V工具的開發(fā)耗時(shí)1.5...

關(guān)鍵字: 汽車 人工智能 智能驅(qū)動(dòng) BSP

北京2024年8月28日 /美通社/ -- 越來越多用戶希望企業(yè)業(yè)務(wù)能7×24不間斷運(yùn)行,同時(shí)企業(yè)卻面臨越來越多業(yè)務(wù)中斷的風(fēng)險(xiǎn),如企業(yè)系統(tǒng)復(fù)雜性的增加,頻繁的功能更新和發(fā)布等。如何確保業(yè)務(wù)連續(xù)性,提升韌性,成...

關(guān)鍵字: 亞馬遜 解密 控制平面 BSP

8月30日消息,據(jù)媒體報(bào)道,騰訊和網(wǎng)易近期正在縮減他們對(duì)日本游戲市場的投資。

關(guān)鍵字: 騰訊 編碼器 CPU

8月28日消息,今天上午,2024中國國際大數(shù)據(jù)產(chǎn)業(yè)博覽會(huì)開幕式在貴陽舉行,華為董事、質(zhì)量流程IT總裁陶景文發(fā)表了演講。

關(guān)鍵字: 華為 12nm EDA 半導(dǎo)體

8月28日消息,在2024中國國際大數(shù)據(jù)產(chǎn)業(yè)博覽會(huì)上,華為常務(wù)董事、華為云CEO張平安發(fā)表演講稱,數(shù)字世界的話語權(quán)最終是由生態(tài)的繁榮決定的。

關(guān)鍵字: 華為 12nm 手機(jī) 衛(wèi)星通信

要點(diǎn): 有效應(yīng)對(duì)環(huán)境變化,經(jīng)營業(yè)績穩(wěn)中有升 落實(shí)提質(zhì)增效舉措,毛利潤率延續(xù)升勢 戰(zhàn)略布局成效顯著,戰(zhàn)新業(yè)務(wù)引領(lǐng)增長 以科技創(chuàng)新為引領(lǐng),提升企業(yè)核心競爭力 堅(jiān)持高質(zhì)量發(fā)展策略,塑強(qiáng)核心競爭優(yōu)勢...

關(guān)鍵字: 通信 BSP 電信運(yùn)營商 數(shù)字經(jīng)濟(jì)

北京2024年8月27日 /美通社/ -- 8月21日,由中央廣播電視總臺(tái)與中國電影電視技術(shù)學(xué)會(huì)聯(lián)合牽頭組建的NVI技術(shù)創(chuàng)新聯(lián)盟在BIRTV2024超高清全產(chǎn)業(yè)鏈發(fā)展研討會(huì)上宣布正式成立。 活動(dòng)現(xiàn)場 NVI技術(shù)創(chuàng)新聯(lián)...

關(guān)鍵字: VI 傳輸協(xié)議 音頻 BSP

北京2024年8月27日 /美通社/ -- 在8月23日舉辦的2024年長三角生態(tài)綠色一體化發(fā)展示范區(qū)聯(lián)合招商會(huì)上,軟通動(dòng)力信息技術(shù)(集團(tuán))股份有限公司(以下簡稱"軟通動(dòng)力")與長三角投資(上海)有限...

關(guān)鍵字: BSP 信息技術(shù)
關(guān)閉
關(guān)閉