當(dāng)前位置:首頁 > 物聯(lián)網(wǎng) > 區(qū)塊鏈
[導(dǎo)讀] 當(dāng)與區(qū)塊鏈數(shù)據(jù)集一起使用時(shí),機(jī)器學(xué)習(xí)模型往往會(huì)過度擬合。什么是過度擬合,如何解決? 使用機(jī)器學(xué)習(xí)來分析區(qū)塊鏈數(shù)據(jù)集的想法乍一看非常吸引人,但它充滿了挑戰(zhàn)。在這些挑戰(zhàn)中,缺少標(biāo)記的數(shù)據(jù)集仍

當(dāng)與區(qū)塊鏈數(shù)據(jù)集一起使用時(shí),機(jī)器學(xué)習(xí)模型往往會(huì)過度擬合。什么是過度擬合,如何解決?

使用機(jī)器學(xué)習(xí)來分析區(qū)塊鏈數(shù)據(jù)集的想法乍一看非常吸引人,但它充滿了挑戰(zhàn)。在這些挑戰(zhàn)中,缺少標(biāo)記的數(shù)據(jù)集仍然是應(yīng)用機(jī)器學(xué)習(xí)方法到區(qū)塊鏈數(shù)據(jù)集時(shí)需要克服的最大困難。

這些限制導(dǎo)致許多機(jī)器學(xué)習(xí)模型使用非常小的數(shù)據(jù)樣本進(jìn)行訓(xùn)練和過度優(yōu)化,從而導(dǎo)致一種稱為過度擬合的現(xiàn)象。今天,我想深入探討一下區(qū)塊鏈分析中的過度擬合問題,并提出一些解決方法。

過度擬合被認(rèn)為是現(xiàn)代深度學(xué)習(xí)應(yīng)用中最大的挑戰(zhàn)之一。從概念上講,當(dāng)模型生成的假設(shè)過于針對(duì)特定數(shù)據(jù)集而導(dǎo)致無法適應(yīng)新數(shù)據(jù)集時(shí),就會(huì)發(fā)生過度擬合。

理解過度擬合的一個(gè)有用的類比是將其視為模型中的幻覺。本質(zhì)上,當(dāng)一個(gè)模型從數(shù)據(jù)集中推斷出不正確的假設(shè)時(shí),它就會(huì)產(chǎn)生幻覺/過度擬合。

自從早期的機(jī)器學(xué)習(xí)以來,已經(jīng)有很多關(guān)于過度擬合的文章,所以我不認(rèn)為有任何聰明的方法來解釋它。在區(qū)塊鏈數(shù)據(jù)集的情況下,過度擬合是缺乏標(biāo)記數(shù)據(jù)的直接結(jié)果。區(qū)塊鏈?zhǔn)谴笮偷?、半匿名的?shù)據(jù)結(jié)構(gòu),在這種結(jié)構(gòu)中,所有東西都用一組公共結(jié)構(gòu)表示,比如交易、地址和區(qū)塊。

從這個(gè)角度來看,區(qū)塊鏈記錄的限定信息是最少的。是交易、轉(zhuǎn)賬還是付款?是個(gè)人投資者的錢包還是交易所的冷錢包?這些限定詞對(duì)于機(jī)器學(xué)習(xí)模型是必不可少的。

假設(shè)我們正在創(chuàng)建一個(gè)模型來檢測(cè)一組區(qū)塊鏈中的交換地址。這個(gè)過程需要我們使用現(xiàn)有的區(qū)塊鏈地址數(shù)據(jù)集來訓(xùn)練模型,我們都知道這些數(shù)據(jù)集并不常見。如果我們使用EtherScan或其他來源的小數(shù)據(jù)集,模型可能會(huì)過度擬合并做出錯(cuò)誤的分類。

使過度擬合如此具有挑戰(zhàn)性的一個(gè)方面是,很難在不同的深度學(xué)習(xí)技術(shù)中推廣。卷積神經(jīng)網(wǎng)絡(luò)傾向于形成與遞歸神經(jīng)網(wǎng)絡(luò)不同的過擬合模式,而遞歸神經(jīng)網(wǎng)絡(luò)又不同于生成模式,這種模式可以外推到任何類型的深度學(xué)習(xí)模型。

具有諷刺意味的是,過度擬合的傾向與深度學(xué)習(xí)模型的計(jì)算能力成線性關(guān)系。由于深度學(xué)習(xí)代理可以生成復(fù)雜的假設(shè),而且?guī)缀醪恍枰魏纬杀?,因此過度擬合的傾向就會(huì)增加。在機(jī)器學(xué)習(xí)模型中,過度擬合是一個(gè)持續(xù)的挑戰(zhàn),但在處理區(qū)塊鏈數(shù)據(jù)集時(shí),它幾乎是一個(gè)給定的問題。解決過度擬合的明顯方法是使用更大的訓(xùn)練數(shù)據(jù)集,但這并不總是可行的。在IntoTheBlock,我們經(jīng)常遇到過度擬合的挑戰(zhàn)。

在區(qū)塊鏈數(shù)據(jù)集中對(duì)抗過度擬合的三個(gè)簡(jiǎn)單策略

與過度擬合作斗爭(zhēng)的首要原則是認(rèn)識(shí)到它。雖然沒有防止過度擬合的靈丹妙藥,但實(shí)踐經(jīng)驗(yàn)表明,一些簡(jiǎn)單的、幾乎是常識(shí)的規(guī)則有助于在深度學(xué)習(xí)應(yīng)用中防止這種現(xiàn)象。

在已經(jīng)發(fā)布的防止過度擬合的幾十個(gè)最佳實(shí)踐中,有三個(gè)基本的思想包含了其中的大多數(shù)。

數(shù)據(jù)/假設(shè)比率

過度擬合通常發(fā)生在一個(gè)模型產(chǎn)生了太多的假設(shè)而沒有相應(yīng)的數(shù)據(jù)來驗(yàn)證它們的時(shí)候。因此,深度學(xué)習(xí)應(yīng)用程序應(yīng)該嘗試在測(cè)試數(shù)據(jù)集和應(yīng)該評(píng)估的假設(shè)之間保持適當(dāng)?shù)谋壤?。然而,這并不總是一個(gè)選擇。

有許多深度學(xué)習(xí)算法,如歸納學(xué)習(xí),依賴于不斷產(chǎn)生新的,有時(shí)更復(fù)雜的假設(shè)。在這些場(chǎng)景中,有一些統(tǒng)計(jì)技術(shù)可以幫助估計(jì)正確的假設(shè)數(shù)量,從而優(yōu)化找到接近正確的假設(shè)的機(jī)會(huì)。

雖然這種方法不能提供準(zhǔn)確的答案,但它有助于保持假設(shè)數(shù)量和數(shù)據(jù)集組成之間的統(tǒng)計(jì)平衡。哈佛大學(xué)教授萊斯利·瓦蘭特在他的書中精采地解釋了這一概念。

當(dāng)進(jìn)行區(qū)塊鏈分析時(shí),數(shù)據(jù)/假設(shè)的比例非常明顯。假設(shè)我們正在構(gòu)建一個(gè)基于一年區(qū)塊鏈交易的預(yù)測(cè)算法。

因?yàn)槲覀儾淮_定要測(cè)試哪個(gè)機(jī)器學(xué)習(xí)模型,所以我們使用神經(jīng)架構(gòu)搜索(NAS)方法,該方法針對(duì)區(qū)塊鏈數(shù)據(jù)集測(cè)試數(shù)百個(gè)模型。

考慮到數(shù)據(jù)集只包含一年的交易,NAS方法可能會(huì)生成一個(gè)完全適合訓(xùn)練數(shù)據(jù)集的模型。

支持簡(jiǎn)單的假設(shè)

在深度學(xué)習(xí)模型中,防止過度擬合的一個(gè)概念上瑣碎但技術(shù)上困難的想法是不斷生成更簡(jiǎn)單的假設(shè)。當(dāng)然!簡(jiǎn)單總是更好的,不是嗎?

但在深度學(xué)習(xí)算法的背景下,有什么更簡(jiǎn)單的假設(shè)呢?如果我們需要將其歸結(jié)為一個(gè)量化的因素,我會(huì)說深度學(xué)習(xí)假設(shè)中屬性的數(shù)量與復(fù)雜度成正比。

簡(jiǎn)單的假設(shè)往往比其他有大量屬性的假設(shè)更容易評(píng)估,無論是在計(jì)算上還是在認(rèn)知上。

因此,與復(fù)雜的模型相比,簡(jiǎn)單的模型通常不太容易過度擬合。下一個(gè)明顯的難題是如何在深度學(xué)習(xí)模型中生成更簡(jiǎn)單的假設(shè)。

一種不太明顯的技術(shù)是根據(jù)算法的估計(jì)復(fù)雜度對(duì)其附加某種形式的懲罰。這種機(jī)制傾向于更簡(jiǎn)單、更準(zhǔn)確的假設(shè),而不是更復(fù)雜、有時(shí)更準(zhǔn)確的假設(shè)。

為了在區(qū)塊鏈分析中解釋這個(gè)概念,讓我們假設(shè)我們正在構(gòu)建一個(gè)在區(qū)塊鏈中對(duì)支付交易進(jìn)行分類的模型。

該模型使用一個(gè)復(fù)雜的深度神經(jīng)網(wǎng)絡(luò)生成1000個(gè)特征來進(jìn)行分類。如果應(yīng)用于較小的區(qū)塊鏈,如Dash或Litecoin,該模型很可能會(huì)過度擬合。

偏差/方差平衡

偏差和方差是深度學(xué)習(xí)模型的兩個(gè)關(guān)鍵估計(jì)量。從概念上講,偏差是我們模型的平均預(yù)測(cè)值與我們?cè)噲D預(yù)測(cè)的正確值之間的差異。高偏差模型對(duì)訓(xùn)練數(shù)據(jù)的重視程度低,模型過于簡(jiǎn)化。它往往會(huì)導(dǎo)致訓(xùn)練和測(cè)試數(shù)據(jù)的高誤差。

或者,方差指的是模型對(duì)給定數(shù)據(jù)點(diǎn)或值的預(yù)測(cè)的可變性,它告訴我們數(shù)據(jù)的分布。高方差模型對(duì)訓(xùn)練數(shù)據(jù)非常重視,對(duì)未見過的數(shù)據(jù)不進(jìn)行泛化。因此,這樣的模型在訓(xùn)練數(shù)據(jù)上表現(xiàn)得很好,但在測(cè)試數(shù)據(jù)上有很高的錯(cuò)誤率。

偏差和方差如何與過度擬合相關(guān)?在超簡(jiǎn)單的術(shù)語中,概括的藝術(shù)可以通過減少模型的偏差而不增加其方差來概括。

在深度學(xué)習(xí)模型中,定期將生成的假設(shè)與測(cè)試數(shù)據(jù)集進(jìn)行比較并評(píng)估結(jié)果是一個(gè)很好的實(shí)踐。如果假設(shè)繼續(xù)輸出相同的錯(cuò)誤,那么我們就有一個(gè)很大的偏差問題,我們需要調(diào)整或替換算法。如果錯(cuò)誤沒有清晰的模式,那么問題就是不一致,我們需要更多的數(shù)據(jù)??偠灾?/p>

· 任何低復(fù)雜度的模型都會(huì)因?yàn)楦咂詈偷头讲疃鴥A向于擬合不足。

· 任何高復(fù)雜度的模型(深度神經(jīng)網(wǎng)絡(luò))都會(huì)因?yàn)榈推詈透叻讲疃鴥A向于過度擬合。

在區(qū)塊鏈分析中,偏差-方差摩擦無處不在。讓我們回到我們的算法,試圖預(yù)測(cè)價(jià)格與許多區(qū)塊鏈因素。如果我們使用簡(jiǎn)單的線性回歸方法,模型很可能不適合。然而,如果我們使用一個(gè)具有小數(shù)據(jù)集的超級(jí)復(fù)雜的神經(jīng)網(wǎng)絡(luò),模型可能會(huì)過度擬合。

使用機(jī)器學(xué)習(xí)來分析區(qū)塊鏈數(shù)據(jù)是一個(gè)非常新興的領(lǐng)域。因此,大多數(shù)模型都遇到了機(jī)器學(xué)習(xí)應(yīng)用程序的傳統(tǒng)挑戰(zhàn)。

過度擬合是區(qū)塊鏈分析中無處不在的挑戰(zhàn)之一,其根本原因是缺乏標(biāo)記數(shù)據(jù)和訓(xùn)練過的模型。沒有什么神奇的解決方案可以解決過度擬合的問題,但是本文中列出的一些原則已經(jīng)被證明對(duì)IntoTheBlock是有效的。

本站聲明: 本文章由作者或相關(guān)機(jī)構(gòu)授權(quán)發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點(diǎn),本站亦不保證或承諾內(nèi)容真實(shí)性等。需要轉(zhuǎn)載請(qǐng)聯(lián)系該專欄作者,如若文章內(nèi)容侵犯您的權(quán)益,請(qǐng)及時(shí)聯(lián)系本站刪除。
換一批
延伸閱讀

9月2日消息,不造車的華為或?qū)⒋呱龈蟮莫?dú)角獸公司,隨著阿維塔和賽力斯的入局,華為引望愈發(fā)顯得引人矚目。

關(guān)鍵字: 阿維塔 塞力斯 華為

倫敦2024年8月29日 /美通社/ -- 英國汽車技術(shù)公司SODA.Auto推出其旗艦產(chǎn)品SODA V,這是全球首款涵蓋汽車工程師從創(chuàng)意到認(rèn)證的所有需求的工具,可用于創(chuàng)建軟件定義汽車。 SODA V工具的開發(fā)耗時(shí)1.5...

關(guān)鍵字: 汽車 人工智能 智能驅(qū)動(dòng) BSP

北京2024年8月28日 /美通社/ -- 越來越多用戶希望企業(yè)業(yè)務(wù)能7×24不間斷運(yùn)行,同時(shí)企業(yè)卻面臨越來越多業(yè)務(wù)中斷的風(fēng)險(xiǎn),如企業(yè)系統(tǒng)復(fù)雜性的增加,頻繁的功能更新和發(fā)布等。如何確保業(yè)務(wù)連續(xù)性,提升韌性,成...

關(guān)鍵字: 亞馬遜 解密 控制平面 BSP

8月30日消息,據(jù)媒體報(bào)道,騰訊和網(wǎng)易近期正在縮減他們對(duì)日本游戲市場(chǎng)的投資。

關(guān)鍵字: 騰訊 編碼器 CPU

8月28日消息,今天上午,2024中國國際大數(shù)據(jù)產(chǎn)業(yè)博覽會(huì)開幕式在貴陽舉行,華為董事、質(zhì)量流程IT總裁陶景文發(fā)表了演講。

關(guān)鍵字: 華為 12nm EDA 半導(dǎo)體

8月28日消息,在2024中國國際大數(shù)據(jù)產(chǎn)業(yè)博覽會(huì)上,華為常務(wù)董事、華為云CEO張平安發(fā)表演講稱,數(shù)字世界的話語權(quán)最終是由生態(tài)的繁榮決定的。

關(guān)鍵字: 華為 12nm 手機(jī) 衛(wèi)星通信

要點(diǎn): 有效應(yīng)對(duì)環(huán)境變化,經(jīng)營業(yè)績(jī)穩(wěn)中有升 落實(shí)提質(zhì)增效舉措,毛利潤率延續(xù)升勢(shì) 戰(zhàn)略布局成效顯著,戰(zhàn)新業(yè)務(wù)引領(lǐng)增長 以科技創(chuàng)新為引領(lǐng),提升企業(yè)核心競(jìng)爭(zhēng)力 堅(jiān)持高質(zhì)量發(fā)展策略,塑強(qiáng)核心競(jìng)爭(zhēng)優(yōu)勢(shì)...

關(guān)鍵字: 通信 BSP 電信運(yùn)營商 數(shù)字經(jīng)濟(jì)

北京2024年8月27日 /美通社/ -- 8月21日,由中央廣播電視總臺(tái)與中國電影電視技術(shù)學(xué)會(huì)聯(lián)合牽頭組建的NVI技術(shù)創(chuàng)新聯(lián)盟在BIRTV2024超高清全產(chǎn)業(yè)鏈發(fā)展研討會(huì)上宣布正式成立。 活動(dòng)現(xiàn)場(chǎng) NVI技術(shù)創(chuàng)新聯(lián)...

關(guān)鍵字: VI 傳輸協(xié)議 音頻 BSP

北京2024年8月27日 /美通社/ -- 在8月23日舉辦的2024年長三角生態(tài)綠色一體化發(fā)展示范區(qū)聯(lián)合招商會(huì)上,軟通動(dòng)力信息技術(shù)(集團(tuán))股份有限公司(以下簡(jiǎn)稱"軟通動(dòng)力")與長三角投資(上海)有限...

關(guān)鍵字: BSP 信息技術(shù)
關(guān)閉
關(guān)閉