當前位置:首頁 > 模擬技術 > 功放技術
[導讀] 管子是有膝點電壓的。在輸出特性曲線(圖1-3)中,負載變大后負載線與輸出特性曲線最左邊的交點會變小,膝點電壓左移,這樣電壓的擺幅就可以變大了(否則,同樣輸入下會過壓)。信號分布在不大不小均值附近

管子是有膝點電壓的。在輸出特性曲線(圖1-3)中,負載變大后負載線與輸出特性曲線最左邊的交點會變小,膝點電壓左移,這樣電壓的擺幅就可以變大了(否則,同樣輸入下會過壓)。信號分布在不大不小均值附近的概率較大,過大和過小的信號發(fā)生的概率比較小。

當今世界,通信技術的發(fā)展可謂日新月異(準確來說是人類的欲望日新月異。。。),然而當前人類所依賴的無線通信完全借由無線電,頻段還大都集中在C頻段以下,相當擁擠。那么,為了在有限的頻譜資源內增加信息的傳輸量,信號調制方式就越來越復雜,出現(xiàn)了如64QAM,256QAM等許多非恒包絡的調制方式,如此,就導致信號的峰均比不斷的變大。圖1-1是信號包絡瞬時概率分布與AB類功放瞬時效率曲線的比較圖(為啥和AB類比較呢?因為不太久以前基站功放就是這個類型)。

圖1-1 AB類功放包絡效率與包絡概率分布

不難看出,信號分布在不大不小均值附近的概率較大,過大和過小的信號發(fā)生的概率比較小。然而從圖中亦可發(fā)現(xiàn)AB類功放的效率是隨著信號功率增加而增加的,因此在均值附近功放的效率很低。當基站功放采用AB類功放時,常常需要從P-1dB回退6dB左右工作,此時的效率就會由50%降到20%(打個比方,不是確定數(shù)據(jù)),不要小看哦,如果要求輸出額定功率100W,你算算有多少功率發(fā)熱去了。。因此傳統(tǒng)的AB類功放就無法滿足現(xiàn)代通信系統(tǒng)對功放效率的要求。因此需要設計高效率的功放來滿足系統(tǒng)對效率的需求。可能你會說這有何難,用開關類功放啊(比如E類),用諧波控制類功放啊(比如F類),理論效率100%啊。但是很不幸,這些高效率功放的線性校正好難,直接把做DPD的搞死了(搞算法的要加油哦。。。),同時這些高效功放的工作帶寬也不太夠,可靠性也不好。好在天無絕人之路,值得慶幸的是,早在1936年,W.H.Doherty先生就發(fā)明了Doherty功放架構。這種架構的功放,在功放回退工作時可以同時具有較高的效率和比較好的線性度。這么牛逼的功放架構的原理是什么呢,下面就一步步來解構Doherty功放架構(下面的講解針對具有了解功放管工作原理的同學,不知道功放工作原理的同學請止步,惡補一下基礎知識先。。。)。

負載牽引原理

在講解Doherty工作原理之前,要先講一下它的命根子---負載牽引。那么什么是負載牽引呢?我們都知道功放在工作時會有一個靜態(tài)工作點以及負載線。以偏置在B類的功放管為例,其在固定負載下意圖如圖1-2所示。

圖1-2 固定負載示意圖

從圖中可以看出,漏極電流是余弦脈沖,也就是說功放沒有出現(xiàn)過壓,工作在欠壓狀態(tài),這個前提很重要,因為此時的效率計算中,基波電流與直流電流的比已經由偏置決定了,功放的效率是與漏極射頻電壓擺幅成正比的(具體解釋寫出來得一大篇,有空再碼)。因此為了得到高效率,功放應處于電壓飽和狀態(tài),也就是射頻電壓擺幅要接近漏極電源電壓。圖中幾種不同顏色的信號代表不同的輸入輸出功率,可以看出輸出功率越小,效率越低(電壓擺幅?。?。然而,我們的需求是要在輸入信號均值區(qū)獲得高的功放效率,也就是說要在輸入信號較小時,電壓的擺幅也能接近漏極電源電壓。這在固定偏置及負載阻抗的情況下是無法辦到的。那么現(xiàn)在如果要求偏置狀態(tài)不變,要實現(xiàn)高效率怎么辦呢?聰明的你可能已經發(fā)現(xiàn),能實現(xiàn)這一目的的方法就是讓功放的負載變大,讓功放在一個較小輸出功率電平上達到電壓飽和,獲得高效率。這就是所謂的負載調制。圖1-4是負載調制的示意圖。

圖1-3負載調制示意圖

從圖可以看出隨著負載的不斷變大(由藍色變到綠色),功放漏極電壓擺幅越來越接近漏極電源電壓,功放的效率越來越高。通過選擇合適的負載阻抗就可以讓功放在輸出均值功率時具有高效率。

這回就先說這么多,有些表述的前提我沒有提,比如功放的諧波短路條件等等,目的就是先把負載調制說清楚。其他問題和知識表述不當之處請大家提出討論。下一回講下經典的兩路對稱Doherty的具體工作過程。

本站聲明: 本文章由作者或相關機構授權發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點,本站亦不保證或承諾內容真實性等。需要轉載請聯(lián)系該專欄作者,如若文章內容侵犯您的權益,請及時聯(lián)系本站刪除。
換一批
延伸閱讀

9月2日消息,不造車的華為或將催生出更大的獨角獸公司,隨著阿維塔和賽力斯的入局,華為引望愈發(fā)顯得引人矚目。

關鍵字: 阿維塔 塞力斯 華為

加利福尼亞州圣克拉拉縣2024年8月30日 /美通社/ -- 數(shù)字化轉型技術解決方案公司Trianz今天宣布,該公司與Amazon Web Services (AWS)簽訂了...

關鍵字: AWS AN BSP 數(shù)字化

倫敦2024年8月29日 /美通社/ -- 英國汽車技術公司SODA.Auto推出其旗艦產品SODA V,這是全球首款涵蓋汽車工程師從創(chuàng)意到認證的所有需求的工具,可用于創(chuàng)建軟件定義汽車。 SODA V工具的開發(fā)耗時1.5...

關鍵字: 汽車 人工智能 智能驅動 BSP

北京2024年8月28日 /美通社/ -- 越來越多用戶希望企業(yè)業(yè)務能7×24不間斷運行,同時企業(yè)卻面臨越來越多業(yè)務中斷的風險,如企業(yè)系統(tǒng)復雜性的增加,頻繁的功能更新和發(fā)布等。如何確保業(yè)務連續(xù)性,提升韌性,成...

關鍵字: 亞馬遜 解密 控制平面 BSP

8月30日消息,據(jù)媒體報道,騰訊和網(wǎng)易近期正在縮減他們對日本游戲市場的投資。

關鍵字: 騰訊 編碼器 CPU

8月28日消息,今天上午,2024中國國際大數(shù)據(jù)產業(yè)博覽會開幕式在貴陽舉行,華為董事、質量流程IT總裁陶景文發(fā)表了演講。

關鍵字: 華為 12nm EDA 半導體

8月28日消息,在2024中國國際大數(shù)據(jù)產業(yè)博覽會上,華為常務董事、華為云CEO張平安發(fā)表演講稱,數(shù)字世界的話語權最終是由生態(tài)的繁榮決定的。

關鍵字: 華為 12nm 手機 衛(wèi)星通信

要點: 有效應對環(huán)境變化,經營業(yè)績穩(wěn)中有升 落實提質增效舉措,毛利潤率延續(xù)升勢 戰(zhàn)略布局成效顯著,戰(zhàn)新業(yè)務引領增長 以科技創(chuàng)新為引領,提升企業(yè)核心競爭力 堅持高質量發(fā)展策略,塑強核心競爭優(yōu)勢...

關鍵字: 通信 BSP 電信運營商 數(shù)字經濟

北京2024年8月27日 /美通社/ -- 8月21日,由中央廣播電視總臺與中國電影電視技術學會聯(lián)合牽頭組建的NVI技術創(chuàng)新聯(lián)盟在BIRTV2024超高清全產業(yè)鏈發(fā)展研討會上宣布正式成立。 活動現(xiàn)場 NVI技術創(chuàng)新聯(lián)...

關鍵字: VI 傳輸協(xié)議 音頻 BSP

北京2024年8月27日 /美通社/ -- 在8月23日舉辦的2024年長三角生態(tài)綠色一體化發(fā)展示范區(qū)聯(lián)合招商會上,軟通動力信息技術(集團)股份有限公司(以下簡稱"軟通動力")與長三角投資(上海)有限...

關鍵字: BSP 信息技術
關閉
關閉